BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 27826124)

  • 1. 'Off-the-shelf' immunotherapy with iPSC-derived rejuvenated cytotoxic T lymphocytes.
    Ando M; Nakauchi H
    Exp Hematol; 2017 Mar; 47():2-12. PubMed ID: 27826124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [iPSC-derived rejuvenated T-cell therapy for Epstein-Barr virus-associated lymphomas].
    Ando M; Nakauchi H; Komatsu N
    Rinsho Ketsueki; 2018; 59(7):932-938. PubMed ID: 30078805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of highly proliferative, rejuvenated cytotoxic T cell clones through pluripotency reprogramming for adoptive immunotherapy.
    Kawai Y; Kawana-Tachikawa A; Kitayama S; Ueda T; Miki S; Watanabe A; Kaneko S
    Mol Ther; 2021 Oct; 29(10):3027-3041. PubMed ID: 34023508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human effector T cells derived from central memory cells rather than CD8(+)T cells modified by tumor-specific TCR gene transfer possess superior traits for adoptive immunotherapy.
    Wu F; Zhang W; Shao H; Bo H; Shen H; Li J; Liu Y; Wang T; Ma W; Huang S
    Cancer Lett; 2013 Oct; 339(2):195-207. PubMed ID: 23791878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells.
    Saetersmoen ML; Hammer Q; Valamehr B; Kaufman DS; Malmberg KJ
    Semin Immunopathol; 2019 Jan; 41(1):59-68. PubMed ID: 30361801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of induced pluripotent stem cell (iPSC) from NY-ESO-I-specific cytotoxic T cells isolated from the melanoma patient with minor HLAs: The practical pilot study for the adoptive immunotherapy for melanoma using iPSC technology.
    Itoh M; Kawagoe S; Nakagawa H; Asahina A; Okano HJ
    Exp Dermatol; 2023 Feb; 32(2):126-134. PubMed ID: 36222007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and expansion of antigen-specific T cells using iPS cell technology: development of "off-the-shelf" T cells for the use in allogeneic transfusion settings.
    Kawamoto H; Masuda K; Nagano S; Maeda T
    Int J Hematol; 2018 Mar; 107(3):271-277. PubMed ID: 29388165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adoptive T-cell therapy for cancer: The era of engineered T cells.
    Bonini C; Mondino A
    Eur J Immunol; 2015 Sep; 45(9):2457-69. PubMed ID: 26202766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [T Lymphocytes with Modified Specificity in the Therapy of Malignant Diseases].
    Vdovin AS; Bykova NA; Efimov GA
    Mol Biol (Mosk); 2017; 51(6):1008-1023. PubMed ID: 29271964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy.
    Ando M; Nishimura T; Yamazaki S; Yamaguchi T; Kawana-Tachikawa A; Hayama T; Nakauchi Y; Ando J; Ota Y; Takahashi S; Nishimura K; Ohtaka M; Nakanishi M; Miles JJ; Burrows SR; Brenner MK; Nakauchi H
    Stem Cell Reports; 2015 Oct; 5(4):597-608. PubMed ID: 26321144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable Antiviral Efficacy of Rejuvenated HIV-Specific Cytotoxic T Lymphocytes Generated from Induced Pluripotent Stem Cells.
    Miki S; Kawai Y; Nakayama-Hosoya K; Iwabuchi R; Terahara K; Tsunetsugu-Yokota Y; Koga M; Matano T; Kaneko S; Kawana-Tachikawa A
    J Virol; 2022 Mar; 96(6):e0221721. PubMed ID: 35107374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies.
    Schmitt TM; Stromnes IM; Chapuis AG; Greenberg PD
    Clin Cancer Res; 2015 Dec; 21(23):5191-7. PubMed ID: 26463711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered T cells: the promise and challenges of cancer immunotherapy.
    Fesnak AD; June CH; Levine BL
    Nat Rev Cancer; 2016 Aug; 16(9):566-81. PubMed ID: 27550819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From CARs to TRUCKs and Beyond: Safely en Route to Adoptive T-cell Therapy for Cancer.
    Dummy
    EBioMedicine; 2016 Dec; 14():1-2. PubMed ID: 27986279
    [No Abstract]   [Full Text] [Related]  

  • 15. Targeting cancer-specific mutations by T cell receptor gene therapy.
    Blankenstein T; Leisegang M; Uckert W; Schreiber H
    Curr Opin Immunol; 2015 Apr; 33():112-9. PubMed ID: 25728991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance.
    Lei F; Zhao B; Haque R; Xiong X; Budgeon L; Christensen ND; Wu Y; Song J
    Cancer Res; 2011 Jul; 71(14):4742-7. PubMed ID: 21628492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adoptive immunotherapy for cancer or viruses.
    Maus MV; Fraietta JA; Levine BL; Kalos M; Zhao Y; June CH
    Annu Rev Immunol; 2014; 32():189-225. PubMed ID: 24423116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies to genetically engineer T cells for cancer immunotherapy.
    Spear TT; Nagato K; Nishimura MI
    Cancer Immunol Immunother; 2016 Jun; 65(6):631-49. PubMed ID: 27138532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced Pluripotent Stem Cells (iPSCs) Provide a Potentially Unlimited T Cell Source for CAR-T Cell Development and Off-the-Shelf Products.
    Sadeqi Nezhad M; Abdollahpour-Alitappeh M; Rezaei B; Yazdanifar M; Seifalian AM
    Pharm Res; 2021 Jun; 38(6):931-945. PubMed ID: 34114161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TCR repertoires of intratumoral T-cell subsets.
    Linnemann C; Mezzadra R; Schumacher TN
    Immunol Rev; 2014 Jan; 257(1):72-82. PubMed ID: 24329790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.