BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27826305)

  • 1. Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO
    Haworth M; Killi D; Materassi A; Raschi A; Centritto M
    Front Plant Sci; 2016; 7():1568. PubMed ID: 27826305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions.
    Chandra S; Lata H; Khan IA; Elsohly MA
    Physiol Mol Biol Plants; 2008 Oct; 14(4):299-306. PubMed ID: 23572895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotypic, Developmental and Environmental Effects on the Rapidity of
    Faralli M; Cockram J; Ober E; Wall S; Galle A; Van Rie J; Raines C; Lawson T
    Front Plant Sci; 2019; 10():492. PubMed ID: 31057590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Responses of diurnal variation of flag-leaf photosynthesis and photosynthetic pigment content to elevated atmospheric CO
    Yuan MM; Zhu JG; Liu G; Wang WL
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):167-175. PubMed ID: 29692025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated CO
    Zheng Y; Li F; Hao L; Yu J; Guo L; Zhou H; Ma C; Zhang X; Xu M
    BMC Plant Biol; 2019 Jun; 19(1):255. PubMed ID: 31195963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2].
    Semedo JN; Rodrigues AP; Lidon FC; Pais IP; Marques I; Gouveia D; Armengaud J; Silva MJ; Martins S; Semedo MC; Dubberstein D; Partelli FL; Reboredo FH; Scotti-Campos P; Ribeiro-Barros AI; DaMatta FM; Ramalho JC
    Tree Physiol; 2021 May; 41(5):708-727. PubMed ID: 33215189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group.
    Volin JC; Reich PB; Givnish TJ
    New Phytol; 1998 Feb; 138(2):315-325. PubMed ID: 33863086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum.
    Allen LH; Kakani VG; Vu JC; Boote KJ
    J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of increasing CO
    Guo DG; Li F; Gao XD; He NN; Zhao XN
    Ying Yong Sheng Tai Xue Bao; 2022 Apr; 33(4):995-1002. PubMed ID: 35543052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of Stomatal Conductance and Water Use Efficiency of Tomato Leaves Exposed to Different Irrigation Regimes and Air CO
    Wei Z; Du T; Li X; Fang L; Liu F
    Front Plant Sci; 2018; 9():445. PubMed ID: 29686689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water availability affects seasonal CO
    Pathare VS; Crous KY; Cooke J; Creek D; Ghannoum O; Ellsworth DS
    Glob Chang Biol; 2017 Dec; 23(12):5164-5178. PubMed ID: 28691268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.
    Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA
    J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions.
    Ainsworth EA; Rogers A
    Plant Cell Environ; 2007 Mar; 30(3):258-270. PubMed ID: 17263773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of elevated atmospheric CO
    Jing LQ; Hu SW; Lu Q; Niu XC; Wang YX; Zhu JG; Wang YL; Yang LX
    Ying Yong Sheng Tai Xue Bao; 2019 Mar; 30(3):884-892. PubMed ID: 30912381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Regulation of Stomatal Conductance as a Strategy to Cope With Ammonium Fertilizer Under Ambient Versus Elevated CO
    Torralbo F; González-Moro MB; Baroja-Fernández E; Aranjuelo I; González-Murua C
    Front Plant Sci; 2019; 10():597. PubMed ID: 31178873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic plasticity of a tropical tree species, Tabebuia rosea, in response to elevated temperature and [CO
    Slot M; Rifai SW; Winter K
    Plant Cell Environ; 2021 Jul; 44(7):2347-2364. PubMed ID: 33759203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf nitrogen have a better relationship with photosynthesis performance across wheat species under elevated CO
    Yu-Zheng Z; Han-Qing Z; Ping L; Dong-Sheng Z; Xing-Yu H; Zhi-Qiang G
    Plant Physiol Biochem; 2021 Sep; 166():964-973. PubMed ID: 34256250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthesis-dependent/independent control of stomatal responses to CO2 in mutant barley with surplus electron transport capacity and reduced SLAH3 anion channel transcript.
    Córdoba J; Molina-Cano JL; Pérez P; Morcuende R; Moralejo M; Savé R; Martínez-Carrasco R
    Plant Sci; 2015 Oct; 239():15-25. PubMed ID: 26398787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant responses to decadal scale increments in atmospheric CO
    Batke SP; Yiotis C; Elliott-Kingston C; Holohan A; McElwain J
    Planta; 2020 Jan; 251(2):52. PubMed ID: 31950281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.