These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27826493)

  • 61. Evolution of nanoporosity in dealloying.
    Erlebacher J; Aziz MJ; Karma A; Dimitrov N; Sieradzki K
    Nature; 2001 Mar; 410(6827):450-3. PubMed ID: 11260708
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhanced Kinetics of Electrochemical Hydrogen Uptake and Release by Palladium Powders Modified by Electrochemical Atomic Layer Deposition.
    Benson DM; Tsang CF; Sugar JD; Jagannathan K; Robinson DB; El Gabaly F; Cappillino PJ; Stickney JL
    ACS Appl Mater Interfaces; 2017 May; 9(21):18338-18345. PubMed ID: 28449579
    [TBL] [Abstract][Full Text] [Related]  

  • 63. H2 sensing properties of pd modified WO3-Fe2O3 nanostructured composite films prepared by amorphous W-Fe dealloying.
    Gao W; Wu G; Ling Y; Sun J
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1190-3. PubMed ID: 23646600
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fabrication of nanoporous Cu-Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis.
    Xu C; Liu Y; Wang J; Geng H; Qiu H
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4626-32. PubMed ID: 22034948
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electrochemical Dealloying of PdCu
    Jana R; Bhim A; Bothra P; Pati SK; Peter SC
    ChemSusChem; 2016 Oct; 9(20):2922-2927. PubMed ID: 27650407
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spongelike nanoporous Pd and Pd/Au structures: facile synthesis and enhanced electrocatalytic activity.
    Son J; Cho S; Lee C; Lee Y; Shim JH
    Langmuir; 2014 Apr; 30(12):3579-88. PubMed ID: 24617746
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electrochemical characteristics of high-Pd alloys in relation to Pd-allergy.
    Berzins DW; Kawashima I; Graves R; Sarkar NK
    Dent Mater; 2000 Jul; 16(4):266-73. PubMed ID: 10831781
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.
    Sheng Q; Wu H; Wexler D; Liu H
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4706-9. PubMed ID: 24738450
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing.
    Liu A; Geng H; Xu C; Qiu H
    Anal Chim Acta; 2011 Oct; 703(2):172-8. PubMed ID: 21889631
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Acceleration of hydrogen absorption by palladium through surface alloying with gold.
    Namba K; Ogura S; Ohno S; Di W; Kato K; Wilde M; Pletikosić I; Pervan P; Milun M; Fukutani K
    Proc Natl Acad Sci U S A; 2018 Jul; 115(31):7896-7900. PubMed ID: 30006467
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assembling nanostructures for effective catalysis: supported palladium nanoparticle multicores coated by a hollow and nanoporous zirconia shell.
    Wang Y; Biradar AV; Asefa T
    ChemSusChem; 2012 Jan; 5(1):132-9. PubMed ID: 22095642
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas-solid reactions.
    Sarac B; Zadorozhnyy V; Berdonosova E; Ivanov YP; Klyamkin S; Gumrukcu S; Sarac AS; Korol A; Semenov D; Zadorozhnyy M; Sharma A; Greer AL; Eckert J
    RSC Adv; 2020 Jun; 10(41):24613-24623. PubMed ID: 35516196
    [TBL] [Abstract][Full Text] [Related]  

  • 73. How the hydrogen sorption properties of palladium are modified through interaction with iridium.
    Goyhenex C; Piccolo L
    Phys Chem Chem Phys; 2017 Dec; 19(48):32451-32458. PubMed ID: 29188256
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Design of nanoporous metals with bimodal pore size distributions for enhanced biosensing.
    Qiu H; Dong X; Huang X
    Nanoscale; 2012 Aug; 4(15):4492-7. PubMed ID: 22538347
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Adsorption and desorption of self-assembled L-cysteine monolayers on nanoporous gold monitored by in situ resistometry.
    Hengge E; Steyskal EM; Bachler R; Dennig A; Nidetzky B; Würschum R
    Beilstein J Nanotechnol; 2019; 10():2275-2279. PubMed ID: 31807412
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Observing Electrochemical Dealloying by Single-Nanoparticle Collision.
    Hao R; Zhang B
    Anal Chem; 2016 Sep; 88(17):8728-34. PubMed ID: 27476812
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage.
    Qiu HJ; Xu HT; Liu L; Wang Y
    Nanoscale; 2015 Jan; 7(2):386-400. PubMed ID: 25419899
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Supercapacitive transport of pharmacologic agents using nanoporous gold electrodes.
    Gittard SD; Pierson BE; Ha CM; Wu CA; Narayan RJ; Robinson DB
    Biotechnol J; 2010 Feb; 5(2):192-200. PubMed ID: 20108274
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evolution of dealloying induced strain in nanoporous gold crystals.
    Chen-Wiegart YK; Harder R; Dunand DC; McNulty I
    Nanoscale; 2017 May; 9(17):5686-5693. PubMed ID: 28426059
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying.
    Cherevko S; Kulyk N; Chung CH
    Nanoscale; 2012 Jan; 4(2):568-75. PubMed ID: 22139451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.