These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 27826661)
1. Genomic assisted selection for enhancing line breeding: merging genomic and phenotypic selection in winter wheat breeding programs with preliminary yield trials. Michel S; Ametz C; Gungor H; Akgöl B; Epure D; Grausgruber H; Löschenberger F; Buerstmayr H Theor Appl Genet; 2017 Feb; 130(2):363-376. PubMed ID: 27826661 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous selection for grain yield and protein content in genomics-assisted wheat breeding. Michel S; Löschenberger F; Ametz C; Pachler B; Sparry E; Bürstmayr H Theor Appl Genet; 2019 Jun; 132(6):1745-1760. PubMed ID: 30810763 [TBL] [Abstract][Full Text] [Related]
3. Accuracy of genomic selection for grain yield and agronomic traits in soft red winter wheat. Lozada DN; Mason RE; Sarinelli JM; Brown-Guedira G BMC Genet; 2019 Nov; 20(1):82. PubMed ID: 31675927 [TBL] [Abstract][Full Text] [Related]
4. Gains through selection for grain yield in a winter wheat breeding program. Lozada DN; Ward BP; Carter AH PLoS One; 2020; 15(4):e0221603. PubMed ID: 32343696 [TBL] [Abstract][Full Text] [Related]
5. Combining grain yield, protein content and protein quality by multi-trait genomic selection in bread wheat. Michel S; Löschenberger F; Ametz C; Pachler B; Sparry E; Bürstmayr H Theor Appl Genet; 2019 Oct; 132(10):2767-2780. PubMed ID: 31263910 [TBL] [Abstract][Full Text] [Related]
6. Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits. Marulanda JJ; Mi X; Utz HF; Melchinger AE; Würschum T; Longin CFH Theor Appl Genet; 2021 Dec; 134(12):4025-4042. PubMed ID: 34618174 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection. Rapp M; Lein V; Lacoudre F; Lafferty J; Müller E; Vida G; Bozhanova V; Ibraliu A; Thorwarth P; Piepho HP; Leiser WL; Würschum T; Longin CFH Theor Appl Genet; 2018 Jun; 131(6):1315-1329. PubMed ID: 29511784 [TBL] [Abstract][Full Text] [Related]
8. Genotyping crossing parents and family bulks can facilitate cost-efficient genomic prediction strategies in small-scale line breeding programs. Michel S; Löschenberger F; Ametz C; Bürstmayr H Theor Appl Genet; 2021 May; 134(5):1575-1586. PubMed ID: 33638651 [TBL] [Abstract][Full Text] [Related]
9. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362 [TBL] [Abstract][Full Text] [Related]
10. Improving the baking quality of bread wheat by genomic selection in early generations. Michel S; Kummer C; Gallee M; Hellinger J; Ametz C; Akgöl B; Epure D; Güngör H; Löschenberger F; Buerstmayr H Theor Appl Genet; 2018 Feb; 131(2):477-493. PubMed ID: 29063161 [TBL] [Abstract][Full Text] [Related]
11. Genomic selection across multiple breeding cycles in applied bread wheat breeding. Michel S; Ametz C; Gungor H; Epure D; Grausgruber H; Löschenberger F; Buerstmayr H Theor Appl Genet; 2016 Jun; 129(6):1179-89. PubMed ID: 27067826 [TBL] [Abstract][Full Text] [Related]
12. Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat. Krause MR; González-Pérez L; Crossa J; Pérez-Rodríguez P; Montesinos-López O; Singh RP; Dreisigacker S; Poland J; Rutkoski J; Sorrells M; Gore MA; Mondal S G3 (Bethesda); 2019 Apr; 9(4):1231-1247. PubMed ID: 30796086 [TBL] [Abstract][Full Text] [Related]
13. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data. Tsai HY; Cericola F; Edriss V; Andersen JR; Orabi J; Jensen JD; Jahoor A; Janss L; Jensen J PLoS One; 2020; 15(5):e0232665. PubMed ID: 32401769 [TBL] [Abstract][Full Text] [Related]
14. Sparse testing using genomic prediction improves selection for breeding targets in elite spring wheat. Atanda SA; Govindan V; Singh R; Robbins KR; Crossa J; Bentley AR Theor Appl Genet; 2022 Jun; 135(6):1939-1950. PubMed ID: 35348821 [TBL] [Abstract][Full Text] [Related]
15. Genomic Selection in Winter Wheat Breeding Using a Recommender Approach. Lozada DN; Carter AH Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32664601 [TBL] [Abstract][Full Text] [Related]
16. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871 [TBL] [Abstract][Full Text] [Related]
17. The value of early-stage phenotyping for wheat breeding in the age of genomic selection. Borrenpohl D; Huang M; Olson E; Sneller C Theor Appl Genet; 2020 Aug; 133(8):2499-2520. PubMed ID: 32488300 [TBL] [Abstract][Full Text] [Related]
18. Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics. Togninalli M; Wang X; Kucera T; Shrestha S; Juliana P; Mondal S; Pinto F; Govindan V; Crespo-Herrera L; Huerta-Espino J; Singh RP; Borgwardt K; Poland J Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37220903 [TBL] [Abstract][Full Text] [Related]
19. High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Sun J; Poland JA; Mondal S; Crossa J; Juliana P; Singh RP; Rutkoski JE; Jannink JL; Crespo-Herrera L; Velu G; Huerta-Espino J; Sorrells ME Theor Appl Genet; 2019 Jun; 132(6):1705-1720. PubMed ID: 30778634 [TBL] [Abstract][Full Text] [Related]