These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27826661)

  • 81. Genome-wide association mapping in elite winter wheat breeding for yield improvement.
    Tyrka M; Krajewski P; Bednarek PT; Rączka K; Drzazga T; Matysik P; Martofel R; Woźna-Pawlak U; Jasińska D; Niewińska M; Ługowska B; Ratajczak D; Sikora T; Witkowski E; Dorczyk A; Tyrka D
    J Appl Genet; 2023 Sep; 64(3):377-391. PubMed ID: 37120451
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Increased genomic prediction accuracy in wheat breeding using a large Australian panel.
    Norman A; Taylor J; Tanaka E; Telfer P; Edwards J; Martinant JP; Kuchel H
    Theor Appl Genet; 2017 Dec; 130(12):2543-2555. PubMed ID: 28887586
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Predictor bias in genomic and phenomic selection.
    Dallinger HG; Löschenberger F; Bistrich H; Ametz C; Hetzendorfer H; Morales L; Michel S; Buerstmayr H
    Theor Appl Genet; 2023 Oct; 136(11):235. PubMed ID: 37878079
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Genomics-driven breeding for local adaptation of durum wheat is enhanced by farmers' traditional knowledge.
    Gesesse CA; Nigir B; de Sousa K; Gianfranceschi L; Gallo GR; Poland J; Kidane YG; Abate Desta E; Fadda C; Pè ME; Dell'Acqua M
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2205774119. PubMed ID: 36972461
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Genomic selection can accelerate the biofortification of spring wheat.
    Joukhadar R; Thistlethwaite R; Trethowan RM; Hayden MJ; Stangoulis J; Cu S; Daetwyler HD
    Theor Appl Genet; 2021 Oct; 134(10):3339-3350. PubMed ID: 34254178
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Deep Kernel for Genomic and Near Infrared Predictions in Multi-environment Breeding Trials.
    Cuevas J; Montesinos-López O; Juliana P; Guzmán C; Pérez-Rodríguez P; González-Bucio J; Burgueño J; Montesinos-López A; Crossa J
    G3 (Bethesda); 2019 Sep; 9(9):2913-2924. PubMed ID: 31289023
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program.
    Sandhu K; Patil SS; Pumphrey M; Carter A
    Plant Genome; 2021 Nov; 14(3):e20119. PubMed ID: 34482627
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Application of multi-trait Bayesian decision theory for parental genomic selection.
    Villar-Hernández BJ; Pérez-Elizalde S; Martini JWR; Toledo F; Perez-Rodriguez P; Krause M; García-Calvillo ID; Covarrubias-Pazaran G; Crossa J
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33693601
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data.
    Lado B; Matus I; Rodríguez A; Inostroza L; Poland J; Belzile F; del Pozo A; Quincke M; Castro M; von Zitzewitz J
    G3 (Bethesda); 2013 Dec; 3(12):2105-14. PubMed ID: 24082033
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Training set determination for genomic selection.
    Ou JH; Liao CT
    Theor Appl Genet; 2019 Oct; 132(10):2781-2792. PubMed ID: 31267147
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids.
    Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P
    Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Assessing the variation and genetic architecture of asparagine content in wheat: What can plant breeding contribute to a reduction in the acrylamide precursor?
    Rapp M; Schwadorf K; Leiser WL; Würschum T; Longin CFH
    Theor Appl Genet; 2018 Nov; 131(11):2427-2437. PubMed ID: 30128740
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Accelerating wheat breeding for end-use quality through association mapping and multivariate genomic prediction.
    Zhang-Biehn S; Fritz AK; Zhang G; Evers B; Regan R; Poland J
    Plant Genome; 2021 Nov; 14(3):e20164. PubMed ID: 34817128
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Applications of Genomic Selection in Breeding Wheat for Rust Resistance.
    Ornella L; González-Camacho JM; Dreisigacker S; Crossa J
    Methods Mol Biol; 2017; 1659():173-182. PubMed ID: 28856650
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Genomic prediction of hybrid performance for agronomic traits in sorghum.
    Sapkota S; Boatwright JL; Kumar N; Myers M; Cox A; Ackerman A; Caughman W; Brenton ZW; Boyles RE; Kresovich S
    G3 (Bethesda); 2023 Apr; 13(4):. PubMed ID: 36454599
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Genomic Prediction of Manganese Efficiency in Winter Barley.
    Leplat F; Jensen J; Madsen P
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898822
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass.
    Pembleton LW; Inch C; Baillie RC; Drayton MC; Thakur P; Ogaji YO; Spangenberg GC; Forster JW; Daetwyler HD; Cogan NOI
    Theor Appl Genet; 2018 Sep; 131(9):1891-1902. PubMed ID: 29860624
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Dissecting the genetics underlying the relationship between protein content and grain yield in a large hybrid wheat population.
    Thorwarth P; Liu G; Ebmeyer E; Schacht J; Schachschneider R; Kazman E; Reif JC; Würschum T; Longin CFH
    Theor Appl Genet; 2019 Feb; 132(2):489-500. PubMed ID: 30456718
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Enhancing the potential of phenomic and genomic prediction in winter wheat breeding using high-throughput phenotyping and deep learning.
    Kaushal S; Gill HS; Billah MM; Khan SN; Halder J; Bernardo A; Amand PS; Bai G; Glover K; Maimaitijiang M; Sehgal SK
    Front Plant Sci; 2024; 15():1410249. PubMed ID: 38872880
    [TBL] [Abstract][Full Text] [Related]  

  • 100. TrG2P: A transfer-learning-based tool integrating multi-trait data for accurate prediction of crop yield.
    Li J; Zhang D; Yang F; Zhang Q; Pan S; Zhao X; Zhang Q; Han Y; Yang J; Wang K; Zhao C
    Plant Commun; 2024 Jul; 5(7):100975. PubMed ID: 38751121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.