BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 27826827)

  • 1. Comparison of four methods for spatial interpolation of estimated atmospheric nitrogen deposition in South China.
    Qu L; Xiao H; Zheng N; Zhang Z; Xu Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2578-2588. PubMed ID: 27826827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison on the methods for spatial interpolation of the annual average precipitation in the Loess Plateau region].
    Yu Y; Wei W; Chen LD; Yang L; Zhang HD
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):999-1006. PubMed ID: 26259439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran.
    Mirzaei R; Sakizadeh M
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2758-69. PubMed ID: 26446732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods.
    Liu R; Chen Y; Sun C; Zhang P; Wang J; Yu W; Shen Z
    Mar Pollut Bull; 2014 Sep; 86(1-2):68-75. PubMed ID: 25113104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites.
    Qiao P; Li P; Cheng Y; Wei W; Yang S; Lei M; Chen T
    Environ Geochem Health; 2019 Dec; 41(6):2709-2730. PubMed ID: 31144251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.
    Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of predicting spatial contaminant distributions at industrial sites using partitioned interpolation method.
    Qiao P; Yang S; Wei W; Li P; Cheng Y; Liang S; Lei M; Chen T
    Environ Geochem Health; 2021 Jan; 43(1):23-36. PubMed ID: 32696201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing spatial interpolation method and sampling number for predicting cadmium distribution in the largest shallow lake of North China.
    Wen L; Zhang L; Bai J; Wang Y; Wei Z; Liu H
    Chemosphere; 2022 Dec; 309(Pt 2):136789. PubMed ID: 36223825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions.
    Ding Q; Wang Y; Zhuang D
    J Environ Manage; 2018 Apr; 212():23-31. PubMed ID: 29427938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon.
    Ouabo RE; Sangodoyin AY; Ogundiran MB
    J Health Pollut; 2020 Jun; 10(26):200605. PubMed ID: 32509406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of spatial distrubition of groundwater level and risky areas of seawater intrusion on the coastal region in Çarşamba Plain, Turkey, using different interpolation methods.
    Arslan H
    Environ Monit Assess; 2014 Aug; 186(8):5123-34. PubMed ID: 24729182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal Interpolation for Environmental Modelling.
    Susanto F; de Souza P; He J
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27509497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of various spatial interpolation methods for non-stationary regional soil mercury content].
    Hu KL; Li BG; Lu YZ; Zhang FR
    Huan Jing Ke Xue; 2004 May; 25(3):132-7. PubMed ID: 15327270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].
    Yang SH; Zhang HT; Guo L; Ren Y
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1649-56. PubMed ID: 26572015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Application of different spatial interpolation methods in sodium intake estimation].
    Fang K; Fang Y; Lian Y; Hu M; He Y
    Wei Sheng Yan Jiu; 2021 Mar; 50(2):217-222. PubMed ID: 33985624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dataset characteristics influence the performance of different interpolation methods for soil salinity spatial mapping.
    Fazeli Sangani M; Namdar Khojasteh D; Owens G
    Environ Monit Assess; 2019 Oct; 191(11):684. PubMed ID: 31659465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prediction of soil nutrients spatial distribution based on neural network model combined with goestatistics].
    Li QQ; Wang CQ; Zhang WJ; Yu Y; Li B; Yang J; Bai GC; Cai Y
    Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):459-66. PubMed ID: 23705392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement and modeling of particulate matter concentrations: Applying spatial analysis and regression techniques to assess air quality.
    Sajjadi SA; Zolfaghari G; Adab H; Allahabadi A; Delsouz M
    MethodsX; 2017; 4():372-390. PubMed ID: 29085784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial interpolation of red bed soil moisture in Nanxiong basin, South China.
    Yan P; Lin K; Wang Y; Zheng Y; Gao X; Tu X; Bai C
    J Contam Hydrol; 2021 Oct; 242():103860. PubMed ID: 34333299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of spatial interpolation methods for soil moisture and its application for monitoring drought.
    Chen H; Fan L; Wu W; Liu HB
    Environ Monit Assess; 2017 Sep; 189(10):525. PubMed ID: 28951976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.