These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27826830)

  • 1. Electrochemical techniques for evaluating short-chain fatty acid utilization by bioanodes.
    Huang W; Kim Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2620-2626. PubMed ID: 27826830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature.
    Asztalos JR; Kim Y
    Water Res; 2015 Dec; 87():503-12. PubMed ID: 26051356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of volatile fatty acids on microbial electrolysis cell performance.
    Yang N; Hafez H; Nakhla G
    Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biochemistry of the evolutive cycle of Triatoma infestans (vinchuca). V. Volatile fatty acids emission].
    Juárez P; Brenner RR
    Acta Physiol Lat Am; 1981; 31(2):113-7. PubMed ID: 6765007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The source of inoculum plays a defining role in the development of MEC microbial consortia fed with acetic and propionic acid mixtures.
    Ruiz V; Ilhan ZE; Kang DW; Krajmalnik-Brown R; Buitrón G
    J Biotechnol; 2014 Jul; 182-183():11-8. PubMed ID: 24798298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electric picnic: synergistic requirements for exoelectrogenic microbial communities.
    Kiely PD; Regan JM; Logan BE
    Curr Opin Biotechnol; 2011 Jun; 22(3):378-85. PubMed ID: 21441020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells.
    Ki D; Parameswaran P; Popat SC; Rittmann BE; Torres CI
    Bioresour Technol; 2015 Nov; 195():83-8. PubMed ID: 26159378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steerable isobutyric and butyric acid production from CO
    Mariën Q; Regueira A; Ganigué R
    Microb Biotechnol; 2024 Jan; 17(1):e14321. PubMed ID: 37649327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of volatile fatty acids (VFAs) on nutrient removal in SBR with biomass adapted to dairy wastewater.
    Janczukowicz W; Rodziewicz J; Czaplicka K; Kłodowska I; Mielcarek A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(7):809-16. PubMed ID: 23445424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in volatile free fatty acids of blood after hepatectomy.
    Zieve L; Nicoloff D
    Surgery; 1976 Nov; 80(5):554-7. PubMed ID: 982272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reference and counter electrode positions affect electrochemical characterization of bioanodes in different bioelectrochemical systems.
    Zhang F; Liu J; Ivanov I; Hatzell MC; Yang W; Ahn Y; Logan BE
    Biotechnol Bioeng; 2014 Oct; 111(10):1931-9. PubMed ID: 24729040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-system Nernst-Michaelis-Menten model applied to bioanodes formed from sewage sludge.
    Rimboud M; Desmond-Le Quemener E; Erable B; Bouchez T; Bergel A
    Bioresour Technol; 2015 Nov; 195():162-9. PubMed ID: 26027903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel LCMSMS method for quantitative measurement of short-chain fatty acids in human stool derivatized with
    Chan JC; Kioh DY; Yap GC; Lee BW; Chan EC
    J Pharm Biomed Anal; 2017 May; 138():43-53. PubMed ID: 28178633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nernst-ping-pong model for evaluating the effects of the substrate concentration and anode potential on the kinetic characteristics of bioanode.
    Peng S; Liang DW; Diao P; Liu Y; Lan F; Yang Y; Lu S; Xiang Y
    Bioresour Technol; 2013 May; 136():610-6. PubMed ID: 23567738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-rate thermophilic methane fermentation on short-chain fatty acids in a down-flow anaerobic packed-bed reactor.
    Tatara M; Yamazawa A; Ueno Y; Fukui H; Goto M; Sode K
    Bioprocess Biosyst Eng; 2005 Apr; 27(2):105-13. PubMed ID: 15565281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fasting serum concentration of short-chain fatty acids in subjects with microscopic colitis and celiac disease: no difference compared with controls, but between genders.
    Jakobsdottir G; Bjerregaard JH; Skovbjerg H; Nyman M
    Scand J Gastroenterol; 2013 Jun; 48(6):696-701. PubMed ID: 23600961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HS-SPME-GC-MS analysis of body odor to test the efficacy of foot deodorant formulations.
    Caroprese A; Gabbanini S; Beltramini C; Lucchi E; Valgimigli L
    Skin Res Technol; 2009 Nov; 15(4):503-10. PubMed ID: 19832965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial conversion of mixed volatile fatty acids into microbial lipids by sequencing batch culture strategy.
    Liu J; Yuan M; Liu JN; Lu LJ; Peng KM; Huang XF
    Bioresour Technol; 2016 Dec; 222():75-81. PubMed ID: 27710909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circulating Levels of Short-Chain Fatty Acids during Pregnancy and Infant Neurodevelopment.
    Hernández-Martínez C; Canals J; Voltas N; Martín-Luján F; Arija V
    Nutrients; 2022 Sep; 14(19):. PubMed ID: 36235606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.
    Jones RJ; Massanet-Nicolau J; Guwy A; Premier GC; Dinsdale RM; Reilly M
    Bioresour Technol; 2015 Aug; 189():279-284. PubMed ID: 25898090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.