BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27826866)

  • 1. Evaluation of the Nucleolar Localization of the RENT Complex to Ribosomal DNA by Chromatin Immunoprecipitation Assays.
    Huang J; Iglesias N; Moazed D
    Methods Mol Biol; 2017; 1505():195-213. PubMed ID: 27826866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immediate chromatin immunoprecipitation and on-bead quantitative PCR analysis: a versatile and rapid ChIP procedure.
    Harmeyer KM; South PF; Bishop B; Ogas J; Briggs SD
    Nucleic Acids Res; 2015 Mar; 43(6):e38. PubMed ID: 25539918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of functional sirtuin chromatin targets in yeast.
    Li M; Valsakumar V; Poorey K; Bekiranov S; Smith JS
    Genome Biol; 2013 May; 14(5):R48. PubMed ID: 23710766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing.
    Huang J; Moazed D
    Genes Dev; 2003 Sep; 17(17):2162-76. PubMed ID: 12923057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replication fork arrest and rDNA silencing are two independent and separable functions of the replication terminator protein Fob1 of Saccharomyces cerevisiae.
    Bairwa NK; Zzaman S; Mohanty BK; Bastia D
    J Biol Chem; 2010 Apr; 285(17):12612-9. PubMed ID: 20179323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of SUMOylation in the RENT Complex by Fusion to a SUMO-Specific Protease Domain.
    Colomina N; Guasch C; Torres-Rosell J
    Methods Mol Biol; 2017; 1505():97-117. PubMed ID: 27826860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perinuclear cohibin complexes maintain replicative life span via roles at distinct silent chromatin domains.
    Chan JN; Poon BP; Salvi J; Olsen JB; Emili A; Mekhail K
    Dev Cell; 2011 Jun; 20(6):867-79. PubMed ID: 21664583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins.
    Hoggard TA; Chang F; Perry KR; Subramanian S; Kenworthy J; Chueng J; Shor E; Hyland EM; Boeke JD; Weinreich M; Fox CA
    PLoS Genet; 2018 May; 14(5):e1007418. PubMed ID: 29795547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion of Limiting rDNA Structural Complexes Triggers Chromosomal Instability and Replicative Aging of
    Fine RD; Maqani N; Li M; Franck E; Smith JS
    Genetics; 2019 May; 212(1):75-91. PubMed ID: 30842210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enforcement of a lifespan-sustaining distribution of Sir2 between telomeres, mating-type loci, and rDNA repeats by Rif1.
    Salvi JS; Chan JN; Pettigrew C; Liu TT; Wu JD; Mekhail K
    Aging Cell; 2013 Feb; 12(1):67-75. PubMed ID: 23082874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity.
    Straight AF; Shou W; Dowd GJ; Turck CW; Deshaies RJ; Johnson AD; Moazed D
    Cell; 1999 Apr; 97(2):245-56. PubMed ID: 10219245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae.
    Ha CW; Sung MK; Huh WK
    Nucleic Acids Res; 2012 Jun; 40(11):4892-903. PubMed ID: 22362748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for the Saccharomyces cerevisiae RENT complex protein Net1 in HMR silencing.
    Kasulke D; Seitz S; Ehrenhofer-Murray AE
    Genetics; 2002 Aug; 161(4):1411-23. PubMed ID: 12196389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae Esc2p interacts with Sir2p through a small ubiquitin-like modifier (SUMO)-binding motif and regulates transcriptionally silent chromatin in a locus-dependent manner.
    Yu Q; Kuzmiak H; Olsen L; Kulkarni A; Fink E; Zou Y; Bi X
    J Biol Chem; 2010 Mar; 285(10):7525-36. PubMed ID: 20048165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The implication of Sir2 in replicative aging and senescence in Saccharomyces cerevisiae.
    Ha CW; Huh WK
    Aging (Albany NY); 2011 Mar; 3(3):319-24. PubMed ID: 21415463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Existence, Transition, and Propagation of Intermediate Silencing States in Ribosomal DNA.
    Zou F; Du M; Chen H; Bai L
    Mol Cell Biol; 2019 Dec; 39(23):. PubMed ID: 31527077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isw1 acts independently of the Isw1a and Isw1b complexes in regulating transcriptional silencing at the ribosomal DNA locus in Saccharomyces cerevisiae.
    Mueller JE; Bryk M
    J Mol Biol; 2007 Aug; 371(1):1-10. PubMed ID: 17561109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of Sir2-Mediated, Silent Chromatin Cohesion.
    Chen YF; Chou CC; Gartenberg MR
    Mol Cell Biol; 2016 Aug; 36(15):2039-50. PubMed ID: 27185881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Regulation of Intrachromatid Recombination and Long-Range Chromosome Interactions in Saccharomyces cerevisiae.
    Zaman S; Choudhury M; Jiang JC; Srivastava P; Mohanty BK; Danielson C; Humphrey SJ; Jazwinski SM; Bastia D
    Mol Cell Biol; 2016 May; 36(10):1451-63. PubMed ID: 26951198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae.
    Dror V; Winston F
    Mol Cell Biol; 2004 Sep; 24(18):8227-35. PubMed ID: 15340082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.