BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27826915)

  • 1. MiRNA Isolation from Plants Rich in Polysaccharides and Polyphenols.
    Sabu KK; Nadiya F; Anjali N
    Methods Mol Biol; 2017; 1509():25-36. PubMed ID: 27826915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-quality RNA extraction from small cardamom tissues rich in polysaccharides and polyphenols.
    Nadiya F; Anjali N; Gangaprasad A; Sabu KK
    Anal Biochem; 2015 Sep; 485():25-7. PubMed ID: 26048648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for isolation of total RNA to recover miRNAs and other small RNAs from diverse species.
    Accerbi M; Schmidt SA; De Paoli E; Park S; Jeong DH; Green PJ
    Methods Mol Biol; 2010; 592():31-50. PubMed ID: 19802587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense.
    Liu L; Han R; Yu N; Zhang W; Xing L; Xie D; Peng D
    PLoS One; 2018; 13(5):e0196592. PubMed ID: 29715304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and efficient isolation of high-quality small RNAs from recalcitrant plant species rich in polyphenols and polysaccharides.
    Peng J; Xia Z; Chen L; Shi M; Pu J; Guo J; Fan Z
    PLoS One; 2014; 9(5):e95687. PubMed ID: 24787387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activated charcoal-mediated RNA extraction method for Azadirachta indica and plants highly rich in polyphenolics, polysaccharides and other complex secondary compounds.
    Rajakani R; Narnoliya L; Sangwan NS; Sangwan RS; Gupta V
    BMC Res Notes; 2013 Mar; 6():125. PubMed ID: 23537338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides.
    Japelaghi RH; Haddad R; Garoosi GA
    Mol Biotechnol; 2011 Oct; 49(2):129-37. PubMed ID: 21302150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of RNA from polysaccharide-rich seeds.
    Sivakumar S; Franco OL; Thayumanavan B
    Prep Biochem Biotechnol; 2007; 37(4):323-32. PubMed ID: 17849287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of high quality RNA from Phyllanthus emblica and its evaluation by downstream applications.
    Kumar A; Singh K
    Mol Biotechnol; 2012 Nov; 52(3):269-75. PubMed ID: 22209897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved and convenient method of RNA isolation from polyphenols and polysaccharide rich plant tissues.
    Kansal R; Kuhar K; Verma I; Gupta RN; Gupta VK; Koundal KR
    Indian J Exp Biol; 2008 Dec; 46(12):842-5. PubMed ID: 19245182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for isolating functional RNA from callus of Dendrobium candidum contented rich polysaccharides.
    Wanqian L; Bochu W; Chuanren D; Biao L
    Colloids Surf B Biointerfaces; 2005 May; 42(3-4):259-62. PubMed ID: 15893227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and detection of small RNAs from plant tissues.
    Smith NA; Eamens AL
    Methods Mol Biol; 2012; 894():155-72. PubMed ID: 22678579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts.
    Kang W; Bang-Berthelsen CH; Holm A; Houben AJ; Müller AH; Thymann T; Pociot F; Estivill X; Friedländer MR
    RNA; 2017 Apr; 23(4):433-445. PubMed ID: 28062594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of high quality RNA from cereal seeds containing high levels of starch.
    Wang G; Wang G; Zhang X; Wang F; Song R
    Phytochem Anal; 2012; 23(2):159-63. PubMed ID: 21739496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of high-throughput sequencing methods for plant microRNA research.
    Ma X; Tang Z; Qin J; Meng Y
    RNA Biol; 2015; 12(7):709-19. PubMed ID: 26016494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants.
    Jagtap S; Shivaprasad PV
    BMC Genomics; 2014 Dec; 15(1):1049. PubMed ID: 25443390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and biochemical analysis of plant small RNAs.
    Ebhardt HA; Ovando MO; Unrau PJ
    Methods Mol Biol; 2012; 894():223-39. PubMed ID: 22678583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of extracellular miRNA in archived serum samples by next-generation sequencing from RNA extracted using multiple methods.
    Gautam A; Kumar R; Dimitrov G; Hoke A; Hammamieh R; Jett M
    Mol Biol Rep; 2016 Oct; 43(10):1165-78. PubMed ID: 27510798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-Length gene enrichment by using an optimized RNA isolation protocol in Bixa orellana recalcitrant tissues.
    Rodríguez-Avila NL; Narváez-Zapata JA; Aguilar-Espinosa ML; Rivera-Madrid R
    Mol Biotechnol; 2009 May; 42(1):84-90. PubMed ID: 19107604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of stress-responsive microRNAs and other small RNAs from plants.
    Reyes JL; Arenas-Huertero C; Sunkar R
    Methods Mol Biol; 2010; 639():239-51. PubMed ID: 20387050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.