These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27826915)

  • 1. MiRNA Isolation from Plants Rich in Polysaccharides and Polyphenols.
    Sabu KK; Nadiya F; Anjali N
    Methods Mol Biol; 2017; 1509():25-36. PubMed ID: 27826915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-quality RNA extraction from small cardamom tissues rich in polysaccharides and polyphenols.
    Nadiya F; Anjali N; Gangaprasad A; Sabu KK
    Anal Biochem; 2015 Sep; 485():25-7. PubMed ID: 26048648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for isolation of total RNA to recover miRNAs and other small RNAs from diverse species.
    Accerbi M; Schmidt SA; De Paoli E; Park S; Jeong DH; Green PJ
    Methods Mol Biol; 2010; 592():31-50. PubMed ID: 19802587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense.
    Liu L; Han R; Yu N; Zhang W; Xing L; Xie D; Peng D
    PLoS One; 2018; 13(5):e0196592. PubMed ID: 29715304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and efficient isolation of high-quality small RNAs from recalcitrant plant species rich in polyphenols and polysaccharides.
    Peng J; Xia Z; Chen L; Shi M; Pu J; Guo J; Fan Z
    PLoS One; 2014; 9(5):e95687. PubMed ID: 24787387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activated charcoal-mediated RNA extraction method for Azadirachta indica and plants highly rich in polyphenolics, polysaccharides and other complex secondary compounds.
    Rajakani R; Narnoliya L; Sangwan NS; Sangwan RS; Gupta V
    BMC Res Notes; 2013 Mar; 6():125. PubMed ID: 23537338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides.
    Japelaghi RH; Haddad R; Garoosi GA
    Mol Biotechnol; 2011 Oct; 49(2):129-37. PubMed ID: 21302150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of RNA from polysaccharide-rich seeds.
    Sivakumar S; Franco OL; Thayumanavan B
    Prep Biochem Biotechnol; 2007; 37(4):323-32. PubMed ID: 17849287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of high quality RNA from Phyllanthus emblica and its evaluation by downstream applications.
    Kumar A; Singh K
    Mol Biotechnol; 2012 Nov; 52(3):269-75. PubMed ID: 22209897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved and convenient method of RNA isolation from polyphenols and polysaccharide rich plant tissues.
    Kansal R; Kuhar K; Verma I; Gupta RN; Gupta VK; Koundal KR
    Indian J Exp Biol; 2008 Dec; 46(12):842-5. PubMed ID: 19245182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for isolating functional RNA from callus of Dendrobium candidum contented rich polysaccharides.
    Wanqian L; Bochu W; Chuanren D; Biao L
    Colloids Surf B Biointerfaces; 2005 May; 42(3-4):259-62. PubMed ID: 15893227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and detection of small RNAs from plant tissues.
    Smith NA; Eamens AL
    Methods Mol Biol; 2012; 894():155-72. PubMed ID: 22678579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts.
    Kang W; Bang-Berthelsen CH; Holm A; Houben AJ; Müller AH; Thymann T; Pociot F; Estivill X; Friedländer MR
    RNA; 2017 Apr; 23(4):433-445. PubMed ID: 28062594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of high quality RNA from cereal seeds containing high levels of starch.
    Wang G; Wang G; Zhang X; Wang F; Song R
    Phytochem Anal; 2012; 23(2):159-63. PubMed ID: 21739496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of high-throughput sequencing methods for plant microRNA research.
    Ma X; Tang Z; Qin J; Meng Y
    RNA Biol; 2015; 12(7):709-19. PubMed ID: 26016494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants.
    Jagtap S; Shivaprasad PV
    BMC Genomics; 2014 Dec; 15(1):1049. PubMed ID: 25443390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and biochemical analysis of plant small RNAs.
    Ebhardt HA; Ovando MO; Unrau PJ
    Methods Mol Biol; 2012; 894():223-39. PubMed ID: 22678583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of extracellular miRNA in archived serum samples by next-generation sequencing from RNA extracted using multiple methods.
    Gautam A; Kumar R; Dimitrov G; Hoke A; Hammamieh R; Jett M
    Mol Biol Rep; 2016 Oct; 43(10):1165-78. PubMed ID: 27510798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-Length gene enrichment by using an optimized RNA isolation protocol in Bixa orellana recalcitrant tissues.
    Rodríguez-Avila NL; Narváez-Zapata JA; Aguilar-Espinosa ML; Rivera-Madrid R
    Mol Biotechnol; 2009 May; 42(1):84-90. PubMed ID: 19107604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of stress-responsive microRNAs and other small RNAs from plants.
    Reyes JL; Arenas-Huertero C; Sunkar R
    Methods Mol Biol; 2010; 639():239-51. PubMed ID: 20387050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.