These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27827475)

  • 21. Concentration dependent effects of urea binding to poly(N-isopropylacrylamide) brushes: a combined experimental and numerical study.
    Micciulla S; Michalowsky J; Schroer MA; Holm C; von Klitzing R; Smiatek J
    Phys Chem Chem Phys; 2016 Feb; 18(7):5324-35. PubMed ID: 26817960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionic liquid modifies the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) in aqueous solution.
    Reddy PM; Venkatesu P
    J Phys Chem B; 2011 Apr; 115(16):4752-7. PubMed ID: 21463007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pressure, Peptides, and a Piezolyte: Structural Analysis of the Effects of Pressure and Trimethylamine-
    Folberth A; Polák J; Heyda J; van der Vegt NFA
    J Phys Chem B; 2020 Jul; 124(30):6508-6519. PubMed ID: 32615760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions.
    Paul S; Patey GN
    J Am Chem Soc; 2007 Apr; 129(14):4476-82. PubMed ID: 17373796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of imidazolium based green solvents on volume phase transition temperature of crosslinked poly(N-isopropylacrylamide-co-acrylic acid) hydrogel.
    Chang CJ; Reddy PM; Hsieh SR; Huang HC
    Soft Matter; 2015 Jan; 11(4):785-92. PubMed ID: 25502756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels.
    Contreras-Cáceres R; Schellkopf L; Fernández-López C; Pastoriza-Santos I; Pérez-Juste J; Stamm M
    Langmuir; 2015 Jan; 31(3):1142-9. PubMed ID: 25526382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small-to-large length scale transition of TMAO interaction with hydrophobic solutes.
    Folberth A; Bharadwaj S; van der Vegt NFA
    Phys Chem Chem Phys; 2022 Jan; 24(4):2080-2087. PubMed ID: 35018925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions of a DNA G-quadruplex with TMAO and urea: a molecular dynamics study on co-solute compensation mechanisms.
    Oprzeska-Zingrebe EA; Smiatek J
    Phys Chem Chem Phys; 2021 Jan; 23(2):1254-1264. PubMed ID: 33355575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of Tacticity on Hydrophobicity of Poly(N-isopropylacrylamide): A Single Chain Molecular Dynamics Simulation Study.
    Chiessi E; Paradossi G
    J Phys Chem B; 2016 Apr; 120(15):3765-76. PubMed ID: 27031404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(11):114503. PubMed ID: 22998267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrophobic interactions in urea-trimethylamine-N-oxide solutions.
    Paul S; Patey GN
    J Phys Chem B; 2008 Sep; 112(35):11106-11. PubMed ID: 18683967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase transition behaviors of poly(N-isopropylacrylamide) microgels induced by tannic acid.
    Chen G; Niu CH; Zhou MY; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):168-75. PubMed ID: 20018293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How Do Urea and Trimethylamine
    Maiti A; Daschakraborty S
    J Phys Chem B; 2021 Sep; 125(36):10149-10165. PubMed ID: 34486370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydration in aqueous osmolyte solutions: the case of TMAO and urea.
    Sahle CJ; Schroer MA; Niskanen J; Elbers M; Jeffries CM; Sternemann C
    Phys Chem Chem Phys; 2020 May; 22(20):11614-11624. PubMed ID: 32405633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crucial importance of water structure modification on trimethylamine N-oxide counteracting effect at high pressure.
    Sarma R; Paul S
    J Phys Chem B; 2013 Jan; 117(2):677-89. PubMed ID: 23268746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermoresponsive polymer-stabilized silver nanoparticles.
    Guo L; Nie J; Du B; Peng Z; Tesche B; Kleinermanns K
    J Colloid Interface Sci; 2008 Mar; 319(1):175-81. PubMed ID: 18068715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(N-isopropylacrylamide) microgels at the oil-water interface: temperature effect.
    Li Z; Richtering W; Ngai T
    Soft Matter; 2014 Sep; 10(33):6182-91. PubMed ID: 25010011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of Polymer Collapse in Miscible Good Solvents.
    Rodríguez-Ropero F; Hajari T; van der Vegt NF
    J Phys Chem B; 2015 Dec; 119(51):15780-8. PubMed ID: 26619003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microgel Particles with Distinct Morphologies and Common Chemical Compositions: a Unified Description of the Responsivity to Temperature and Osmotic Stress.
    Ruscito A; Chiessi E; Toumia Y; Oddo L; Domenici F; Paradossi G
    Gels; 2020 Oct; 6(4):. PubMed ID: 33081416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative study of urea-induced aggregation of collapsed poly(N-isopropylacrylamide) and poly(N,N-diethylacrylamide) chains in aqueous solutions.
    Lu Y; Ye X; Zhou K; Shi W
    J Phys Chem B; 2013 Jun; 117(24):7481-8. PubMed ID: 23675966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.