BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27827532)

  • 1. Development and evaluation of an experimental protocol for 3-D visualization and characterization of the structure of bacterial biofilms in porous media using laboratory X-ray tomography.
    Ivankovic T; Rolland du Roscoat S; Geindreau C; Séchet P; Huang Z; Martins JM
    Biofouling; 2016 Nov; 32(10):1235-1244. PubMed ID: 27827532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of synchrotron X-ray microtomography for visualizing bacterial biofilms 3D microstructure in porous media.
    Rolland du Roscoat S; Martins JM; Séchet P; Vince E; Latil P; Geindreau C
    Biotechnol Bioeng; 2014 Jun; 111(6):1265-71. PubMed ID: 24293082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging biofilm in porous media using X-ray computed microtomography.
    Davit Y; Iltis G; Debenest G; Veran-Tissoires S; Wildenschild D; Gerino M; Quintard M
    J Microsc; 2011 Apr; 242(1):15-25. PubMed ID: 21118226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative 3D comparison of biofilm imaged by X-ray micro-tomography and two-photon laser scanning microscopy.
    Larue AE; Swider P; Duru P; Daviaud D; Quintard M; Davit Y
    J Microsc; 2018 Sep; 271(3):302-314. PubMed ID: 29926921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First visualisation of bacterial biofilms in 3D porous media with neutron microtomography without contrast agent.
    Rolland du Roscoat S; Ivankovic T; Lenoir N; Dekic S; Martins JMF; Geindreau C
    J Microsc; 2022 Jan; 285(1):20-28. PubMed ID: 34664715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development.
    Carrel M; Morales VL; Beltran MA; Derlon N; Kaufmann R; Morgenroth E; Holzner M
    Water Res; 2018 May; 134():280-291. PubMed ID: 29433078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms.
    He JZ; Wang DJ; Fang H; Fu QL; Zhou DM
    Chemosphere; 2017 Feb; 169():1-8. PubMed ID: 27855326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools.
    Carrel M; Beltran MA; Morales VL; Derlon N; Morgenroth E; Kaufmann R; Holzner M
    PLoS One; 2017; 12(7):e0180374. PubMed ID: 28732010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real time monitoring of biofilm development under flow conditions in porous media.
    Bozorg A; Gates ID; Sen A
    Biofouling; 2012; 28(9):937-51. PubMed ID: 22963147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A versatile micromodel technology to explore biofilm development in porous media flows.
    Papadopoulos C; Larue AE; Toulouze C; Mokhtari O; Lefort J; Libert E; Assémat P; Swider P; Malaquin L; Davit Y
    Lab Chip; 2024 Jan; 24(2):254-271. PubMed ID: 38059908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a Pseudomonas putida biofilm.
    Nancharaiah YV; Venugopalan VP; Wuertz S; Wilderer PA; Hausner M
    J Microbiol Methods; 2005 Feb; 60(2):179-87. PubMed ID: 15590092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties.
    Bozorg A; Gates ID; Sen A
    J Microbiol Methods; 2015 Feb; 109():84-92. PubMed ID: 25479429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth.
    Sauer K; Camper AK
    J Bacteriol; 2001 Nov; 183(22):6579-89. PubMed ID: 11673428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model of a polyethylene microporous hollow-fiber membrane biofilm reactor inoculated with Pseudomonas putida strain To1 1A for gaseous toluene removal.
    Kumar A; Yuan X; Ergas S; Dewulf J; Van Langenhove H
    Bioresour Technol; 2010 Apr; 101(7):2180-4. PubMed ID: 20031397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms.
    Gjermansen M; Ragas P; Sternberg C; Molin S; Tolker-Nielsen T
    Environ Microbiol; 2005 Jun; 7(6):894-906. PubMed ID: 15892708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated
    Chen G; Lin H; Chen X
    J Microbiol Biotechnol; 2016 Dec; 26(12):2116-2126. PubMed ID: 27558435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to model the spatiotemporal development of biofilm phase in porous media.
    Bozorg A; Sen A; Gates ID
    Environ Microbiol; 2011 Nov; 13(11):3010-23. PubMed ID: 21951321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement-relaxation correlations.
    Vogt SJ; Sanderlin AB; Seymour JD; Codd SL
    Biotechnol Bioeng; 2013 May; 110(5):1366-75. PubMed ID: 23239390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the impact of evolving biofilms on flow in porous media inside a microfluidic channel.
    Karimifard S; Li X; Elowsky C; Li Y
    Water Res; 2021 Jan; 188():116536. PubMed ID: 33125999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphogenesis of Biofilms in Porous Media and Control on Hydrodynamics.
    Kurz DL; Secchi E; Stocker R; Jimenez-Martinez J
    Environ Sci Technol; 2023 Apr; 57(14):5666-5677. PubMed ID: 36976631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.