BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27827837)

  • 1. Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting.
    Huang X; Jiang Y; Liu X; Xu H; Han Z; Rong H; Yang H; Yan M; Yu H
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS.
    Liu X; Huang X; Jiang Y; Xu H; Guo J; Hou HW; Yan M; Yu H
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):794-803. PubMed ID: 28727559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing.
    Huang X; Guo J; Wang X; Yan M; Kang Y; Yu H
    PLoS One; 2014; 9(8):e104539. PubMed ID: 25111497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell classification in lensless single random phase encoding using convolutional neural networks.
    O'Connor T; Hawxhurst C; Shor LM; Javidi B
    Opt Express; 2020 Oct; 28(22):33504-33515. PubMed ID: 33115011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super Field-of-View Lensless Camera by Coded Image Sensors.
    Nakamura T; Kagawa K; Torashima S; Yamaguchi M
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Surface Acoustic Wave Pumped Lensless Microfluidic Imaging System for Flowing Cell Detection and Counting.
    Huang X; Farooq U; Chen J; Ge Y; Gao H; Su J; Wang X; Dong S; Luo JK
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1478-1487. PubMed ID: 28866597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lensless imaging for point-of-care testing.
    Moon S; Keles HO; Kim YG; Kuritzkes D; Demirci U
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6376-9. PubMed ID: 19964416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating microfluidics and lensless imaging for point-of-care testing.
    Moon S; Keles HO; Ozcan A; Khademhosseini A; Haeggstrom E; Kuritzkes D; Demirci U
    Biosens Bioelectron; 2009 Jul; 24(11):3208-14. PubMed ID: 19467854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-pixel resolving optofluidic microscope for on-chip cell imaging.
    Zheng G; Lee SA; Yang S; Yang C
    Lab Chip; 2010 Nov; 10(22):3125-9. PubMed ID: 20877904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Precision Lensless Microscope on a Chip Based on In-Line Holographic Imaging.
    Huang X; Li Y; Xu X; Wang R; Yao J; Han W; Wei M; Chen J; Xuan W; Sun L
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33494493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of lateral resolution of single random phase encoded lensless imaging systems.
    Goswami S; Wani P; Gupta G; Javidi B
    Opt Express; 2023 Mar; 31(7):11213-11226. PubMed ID: 37155762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-Based Single-Cell Optical Image Studies.
    Sun J; Tárnok A; Su X
    Cytometry A; 2020 Mar; 97(3):226-240. PubMed ID: 31981309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution.
    Sobieranski AC; Inci F; Tekin HC; Yuksekkaya M; Comunello E; Cobra D; von Wangenheim A; Demirci U
    Light Sci Appl; 2015; 4():. PubMed ID: 29657866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of an optical CMOS sensor with a microfluidic channel allows a sensitive readout for biological assays in point-of-care tests.
    Van Dorst B; Brivio M; Van Der Sar E; Blom M; Reuvekamp S; Tanzi S; Groenhuis R; Adojutelegan A; Lous EJ; Frederix F; Stuyver LJ
    Biosens Bioelectron; 2016 Apr; 78():126-131. PubMed ID: 26599482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A super-resolution scanning algorithm for lensless microfluidic imaging using the dual-line array image sensor.
    Tian D; Yu N; Li Z; Li S; Li N
    PLoS One; 2020; 15(6):e0235111. PubMed ID: 32584867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Quantized CNN-Based Microfluidic Lensless-Sensing Mobile Blood-Acquisition and Analysis System.
    Liao Y; Yu N; Tian D; Li S; Li Z
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer pixel super-resolution lensless in-line holographic microscope with random sample movement.
    Wang M; Feng S; Wu J
    Sci Rep; 2017 Oct; 7(1):12791. PubMed ID: 28986555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel lensless compressive imaging via deep convolutional neural networks.
    Yuan X; Pu Y
    Opt Express; 2018 Jan; 26(2):1962-1977. PubMed ID: 29401917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-resolution for scanning light stimulation systems.
    Bitzer LA; Neumann K; Benson N; Schmechel R
    Rev Sci Instrum; 2016 Sep; 87(9):093701. PubMed ID: 27782600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging.
    Cui X; Lee LM; Heng X; Zhong W; Sternberg PW; Psaltis D; Yang C
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10670-5. PubMed ID: 18663227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.