These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27827856)

  • 1. Simulation of SAW Humidity Sensors Based on ( 11 2 ¯ 0 ) ZnO/R-Sapphire Structures.
    Lan XD; Zhang SY; Fan L; Wang Y
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of surface acoustic waves excited by (1120) ZnO films deposited on R-sapphire substrates.
    Wang Y; Zhang SY; Fan L; Shui XJ; Zhang ZN; Wasa K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1213-8. PubMed ID: 25004484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of surface acoustic waves propagating in ZnO-SiO2-Si multilayer structure.
    Zhang Z; Wen Z; Wang C
    Ultrasonics; 2013 Feb; 53(2):363-8. PubMed ID: 22840373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Theoretical Study of Love Wave Sensors Based on ZnO-Glass Layered Structures for Application to Liquid Environments.
    Caliendo C; Hamidullah M
    Biosensors (Basel); 2016 Dec; 6(4):. PubMed ID: 27918419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors.
    Mohanan AA; Islam MS; Ali SH; Parthiban R; Ramakrishnan N
    Sensors (Basel); 2013 Feb; 13(2):2164-75. PubMed ID: 23389346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on Fabrication of ZnO Waveguide Layer for Love Wave Humidity Sensor Based on Magnetron Sputtering.
    Wen C; Niu T; Ma Y; Gao N; Ru F
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30309017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications.
    Mandal D; Banerjee S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of SAW properties of epitaxial ZnO films grown on R-Al2O3 substrates.
    Emanetoglu NW; Patounakis G; Liang S; Gorla CR; Wittstruck R; Lu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1389-94. PubMed ID: 11570764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO
    Caliendo C; Laidoudi F
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32138294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Performance of ZnO/SiO
    Su R; Fu S; Shen J; Chen Z; Lu Z; Yang M; Wang R; Zeng F; Wang W; Song C; Pan F
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42378-42385. PubMed ID: 32830495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV Sensor Based on Surface Acoustic Waves in ZnO/Fused Silica.
    Caliendo C; Benetti M; Cannatà D; Buzzin A; Grossi F; Verona E; de Cesare G
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of surface acoustic wave propagation in multi-layered structures using extended FEM/SDA software.
    Hashimoto KY; Omori T; Yamaguchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2559-64. PubMed ID: 19942542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FEM Modeling of the Temperature Influence on the Performance of SAW Sensors Operating at GigaHertz Frequency Range and at High Temperature Up to 500 °C.
    Asseko Ondo JC; Blampain EJJ; N'Tchayi Mbourou G; Mc Murtry S; Hage-Ali S; Elmazria O
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32726976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimorph material/structure designs for high sensitivity flexible surface acoustic wave temperature sensors.
    Tao R; Hasan SA; Wang HZ; Zhou J; Luo JT; McHale G; Gibson D; Canyelles-Pericas P; Cooke MD; Wood D; Liu Y; Wu Q; Ng WP; Franke T; Fu YQ
    Sci Rep; 2018 Jun; 8(1):9052. PubMed ID: 29899347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element model of surface acoustic wave method for mechanical characterization of patterned thin films of the ultra-large scaled integrated interconnect.
    Xiao X; Shan X; Tao Y; Sun Y; Kikkawa T
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1602-6. PubMed ID: 23646690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Three-Dimensional Finite Element Analysis Model for SH-SAW Torque Sensors.
    Jiang C; Chen Y; Cho C
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31623365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite Element Study for Mass Sensitivity of Love Surface Acoustic Wave Sensor with Si
    Li L; Zhou M; Huang L; Jiang B
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FEM simulation of Rayleigh waves for CMOS compatible SAW devices based on AlN/SiO₂/Si(100).
    Kaletta UC; Wenger C
    Ultrasonics; 2014 Jan; 54(1):291-5. PubMed ID: 23684473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.
    Kabir KM; Sabri YM; Esmaielzadeh Kandjani A; Matthews GI; Field M; Jones LA; Nafady A; Ippolito SJ; Bhargava SK
    Langmuir; 2015 Aug; 31(30):8519-29. PubMed ID: 26169072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of the dependence of ZnO film on the sensitivity of Love mode sensor in ZnO/quartz structure.
    Chu SY; Water W; Liaw JT
    Ultrasonics; 2003 Mar; 41(2):133-9. PubMed ID: 12565077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.