These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27827883)

  • 1. Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm.
    Kyristsis S; Antonopoulos A; Chanialakis T; Stefanakis E; Linardos C; Tripolitsiotis A; Partsinevelos P
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes.
    Sun J; Li B; Jiang Y; Wen CY
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27792156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
    Nguyen PH; Kim KW; Lee YW; Park KR
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.
    Nguyen PH; Arsalan M; Koo JH; Naqvi RA; Truong NQ; Park KR
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Precise and GNSS-Free Landing System on Moving Platforms for Rotary-Wing UAVs.
    Alarcón F; García M; Maza I; Viguria A; Ollero A
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised Human Detection with an Embedded Vision System on a Fully Autonomous UAV for Search and Rescue Operations.
    Lygouras E; Santavas N; Taitzoglou A; Tarchanidis K; Mitropoulos A; Gasteratos A
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31416131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.
    Morales J; Castelo I; Serra R; Lima PU; Basiri M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Aerial Autonomous Docking and Landing Technology of Dual Multi-Rotor UAV.
    Wang L; Jiang X; Wang D; Wang L; Tu Z; Ai J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual Navigation and Landing Control of an Unmanned Aerial Vehicle on a Moving Autonomous Surface Vehicle via Adaptive Learning.
    Zhang HT; Hu BB; Xu Z; Cai Z; Liu B; Wang X; Geng T; Zhong S; Zhao J
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5345-5355. PubMed ID: 34048350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.
    Paull L; Thibault C; Nagaty A; Seto M; Li H
    IEEE Trans Cybern; 2014 Sep; 44(9):1605-18. PubMed ID: 25137689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
    Nepal U; Eslamiat H
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization Framework for Real-Time UAV Autonomous Landing: An On-Ground Deployed Visual Approach.
    Kong W; Hu T; Zhang D; Shen L; Zhang J
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28629189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision Landing Test and Simulation of the Agricultural UAV on Apron.
    Guo Y; Guo J; Liu C; Xiong H; Chai L; He D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor.
    Kikutis R; Stankūnas J; Rudinskas D; Masiulionis T
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28956839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Implementation of a UAV-Based Airborne Computing Platform for Computer Vision and Machine Learning Applications.
    Douklias A; Karagiannidis L; Misichroni F; Amditis A
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Vision-Based Approach to UAV Detection and Tracking in Cooperative Applications.
    Opromolla R; Fasano G; Accardo D
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30309035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vision-based safe autonomous UAV docking with panoramic sensors.
    Nguyen PT; Westerlund T; Peña Queralta J
    Front Robot AI; 2023; 10():1223157. PubMed ID: 38077455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fuzzy-Based System for Autonomous Unmanned Aerial Vehicle Ship Deck Landing.
    Tsitses I; Zacharia P; Xidias E; Papoutsidakis M
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.