These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 27828047)
1. Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar. Hsu PS; Gragston M; Wu Y; Zhang Z; Patnaik AK; Kiefer J; Roy S; Gord JR Appl Opt; 2016 Oct; 55(28):8042-8048. PubMed ID: 27828047 [TBL] [Abstract][Full Text] [Related]
2. Emissions in short-gated ns/ps/fs-LIBS for fuel-to-air ratio measurements in methane-air flames. Gragston M; Hsu P; Jiang N; Roy S; Zhang Z Appl Opt; 2021 May; 60(15):C114-C120. PubMed ID: 34143118 [TBL] [Abstract][Full Text] [Related]
3. Time-Gated Single-Shot Picosecond Laser-Induced Breakdown Spectroscopy (ps-LIBS) for Equivalence-Ratio Measurements. Gragston M; Hsu P; Patnaik A; Zhang Z; Roy S Appl Spectrosc; 2020 Mar; 74(3):340-346. PubMed ID: 31617399 [TBL] [Abstract][Full Text] [Related]
4. Laser-Induced Breakdown Spectroscopy (LIBS) for the Measurement of Spatial Structures and Fuel Distribution in Flames. Kotzagianni M; Kakkava E; Couris S Appl Spectrosc; 2016 Apr; 70(4):627-34. PubMed ID: 26865582 [TBL] [Abstract][Full Text] [Related]
5. Quantitative fuel-to-air ratio determination for elevated-pressure methane/air flames using chemiluminescence emission. McCord W; Gragston M; Wu Y; Zhang Z; Hsu P; Rein K; Jiang N; Roy S; Gord JR Appl Opt; 2019 Apr; 58(10):C61-C67. PubMed ID: 31045032 [TBL] [Abstract][Full Text] [Related]
6. [Quantitative Measurement of Equivalence Ratios of Methane/Air Mixture by Laser-Induced Breakdown Spectroscopy: the Effects of Detector Gated Mode and Laser Wavelength]. Zuo P; Li B; Yan BB; Li ZS; Yao MF Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):2990-5. PubMed ID: 26978894 [TBL] [Abstract][Full Text] [Related]
7. Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector. Eseller KE; Yueh FY; Singh JP Appl Opt; 2008 Nov; 47(31):G144-8. PubMed ID: 19122695 [TBL] [Abstract][Full Text] [Related]
8. [Quantitative analysis of Cu in water by collinear DP-LIBS]. Zheng ML; Yao MY; Chen TB; Lin YZ; Li WB; Liu MH Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1954-8. PubMed ID: 25269315 [TBL] [Abstract][Full Text] [Related]
9. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS). Wang Z; Deguchi Y; Liu R; Ikutomo A; Zhang Z; Chong D; Yan J; Liu J; Shiou FJ Appl Spectrosc; 2017 Sep; 71(9):2187-2198. PubMed ID: 28418264 [TBL] [Abstract][Full Text] [Related]
10. Quantitative Analysis of Manganese in Underwater Steel Samples Using Long-Short Double-Pulse Laser-Induced Breakdown Spectroscopy. Wang Z; Rong K; Tanaka S; Deguchi Y; Cui M; Yan J Appl Spectrosc; 2021 Nov; 75(11):1364-1373. PubMed ID: 34431712 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous LIBS signal and plasma density measurement for quantitative insight into signal instability at elevated pressure. Patnaik AK; Wu Y; Hsu PS; Gragston M; Zhang Z; Gord JR; Roy S Opt Express; 2018 Oct; 26(20):25750-25760. PubMed ID: 30469671 [TBL] [Abstract][Full Text] [Related]
12. Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy. Effenberger AJ; Scott JR Anal Bioanal Chem; 2011 Jul; 400(10):3217-27. PubMed ID: 21553217 [TBL] [Abstract][Full Text] [Related]
13. Effects of sample temperature in femtosecond single-pulse laser-induced breakdown spectroscopy. Scaffidi J; Pearman W; Carter JC; Colston BW; Angel SM Appl Opt; 2004 May; 43(13):2786-91. PubMed ID: 15130020 [TBL] [Abstract][Full Text] [Related]
14. [Influence of Flame Emission Spectroscopy on K measurement Using Laser Induced Breakdown Spectroscopy]. Zhang ZH; Song Q; Alwahabi ZT; Yao Q Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):1033-6. PubMed ID: 26197597 [TBL] [Abstract][Full Text] [Related]
15. Detection of Low Lithium Concentrations Using Laser-Induced Breakdown Spectroscopy (LIBS) in High-Pressure and High-Flow Conditions. Raimundo IM; Michael Angel S; Colón AM Appl Spectrosc; 2021 Nov; 75(11):1374-1381. PubMed ID: 34346757 [TBL] [Abstract][Full Text] [Related]
16. Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure. Hentschel J; Suntz R; Bockhorn H Appl Opt; 2005 Nov; 44(31):6673-81. PubMed ID: 16270556 [TBL] [Abstract][Full Text] [Related]
17. Reutilization of nanosecond pulse laser energy and its performance in single particle triggered LIBS. Zhou P; Zhu Y; Li S; Zhu LG RSC Adv; 2018 Dec; 8(73):41915-41919. PubMed ID: 35558772 [TBL] [Abstract][Full Text] [Related]
18. In situ investigation of laser-induced ignition and the early stages of methane-air combustion at high pressures using a rapidly tuned diode laser at 2.55 microm. Lackner M; Forsich C; Winter F; Kopecek H; Wintner E Spectrochim Acta A Mol Biomol Spectrosc; 2003 Nov; 59(13):2997-3018. PubMed ID: 14583276 [TBL] [Abstract][Full Text] [Related]
19. Spatially resolved laser-induced breakdown spectroscopy in methane-air diffusion flames. Majd AE; Arabanian AS; Massudi R; Nazeri M Appl Spectrosc; 2011 Jan; 65(1):36-42. PubMed ID: 21211152 [TBL] [Abstract][Full Text] [Related]
20. Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames. Frank JH; Chen X; Patterson BD; Settersten TB Appl Opt; 2004 Apr; 43(12):2588-97. PubMed ID: 15119630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]