These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 27828056)
1. Simultaneous interferometric measurement of linear coefficient of thermal expansion and temperature-dependent refractive index coefficient of optical materials. Corsetti JA; Green WE; Ellis JD; Schmidt GR; Moore DT Appl Opt; 2016 Oct; 55(29):8145-8152. PubMed ID: 27828056 [TBL] [Abstract][Full Text] [Related]
2. Interferometric measurement of the temperature coefficient of the refractive index dn/dT and the coefficient of thermal expansion of Pr:YLF laser crystals. Kazasidis OS; Wittrock U Opt Express; 2014 Dec; 22(25):30683-96. PubMed ID: 25607016 [TBL] [Abstract][Full Text] [Related]
3. A Dual-Cavity Fiber Fabry-Pérot Interferometer for Simultaneous Measurement of Thermo-Optic and Thermal Expansion Coefficients of a Polymer. Lee CL; Ma CT; Yeh KC; Chen YM Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433093 [TBL] [Abstract][Full Text] [Related]
4. Experimental determination of the effect of temperature on refractive index and optical path length of glass. Parker CJ; Popov WA Appl Opt; 1971 Sep; 10(9):2137-43. PubMed ID: 20111284 [TBL] [Abstract][Full Text] [Related]
6. Suppression of air refractive index variations in high-resolution interferometry. Lazar J; Číp O; Čížek M; Hrabina J; Buchta Z Sensors (Basel); 2011; 11(8):7644-55. PubMed ID: 22164036 [TBL] [Abstract][Full Text] [Related]
7. Effect of Residual Stress on Thermal Deformation Behavior. Sasaki T; Yoshida S; Ogawa T; Shitaka J; McGibboney C Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835611 [TBL] [Abstract][Full Text] [Related]
8. Refractive index compensation in over-determined interferometric systems. Lazar J; Holá M; Číp O; Čížek M; Hrabina J; Buchta Z Sensors (Basel); 2012 Oct; 12(10):14084-94. PubMed ID: 23202037 [TBL] [Abstract][Full Text] [Related]
9. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively. Nakanishi K; Kogure A; Fujii T; Kokawa R; Deuchi K; Kuwana R; Takamatsu H J Nanobiotechnology; 2013 Oct; 11():33. PubMed ID: 24107328 [TBL] [Abstract][Full Text] [Related]
10. Interferometric technique for measuring the refractive index variation of a liquid with temperature. Boxman RL; Shlien DJ Rev Sci Instrum; 1978 Jun; 49(6):861. PubMed ID: 18699208 [TBL] [Abstract][Full Text] [Related]
11. A high resolution dilatometer using optical fiber interferometer. Qin X; Cao G; Geng M; Liu S; Liu Y Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38780389 [TBL] [Abstract][Full Text] [Related]
12. Interferometric measurement of the temperature coefficient of the refractive index dn/dT and the coefficient of thermal expansion of Pr:YLF laser crystals: erratum. Kazasidis OS; Wittrock U Opt Express; 2015 Sep; 23(18):24097. PubMed ID: 26368501 [TBL] [Abstract][Full Text] [Related]
13. Stepwise interferometric method of measuring the refractive index of liquid samples. Li T; Tan X Appl Opt; 1993 May; 32(13):2274-7. PubMed ID: 20820380 [TBL] [Abstract][Full Text] [Related]
14. Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature. Wang R; Qiao X Appl Opt; 2014 Nov; 53(32):7724-8. PubMed ID: 25402996 [TBL] [Abstract][Full Text] [Related]
15. Frequency analysis of temperature-dependent interferometric signal for the measurement of the temperature coefficient of refractive index. Zhou J; Shen J; Neill WS Rev Sci Instrum; 2016 Jul; 87(7):073104. PubMed ID: 27475545 [TBL] [Abstract][Full Text] [Related]
16. Real-time measurement of parametric influences on the refractive index and length changes in silica optical fibers. Rana S; Fleming A; Subbaraman H; Kandadai N Opt Express; 2022 Apr; 30(9):15659-15668. PubMed ID: 35473281 [TBL] [Abstract][Full Text] [Related]
17. Autocompensating interferometer for measuring the changes in refractive index of supercooled water as a function of temperature at 632.8 nm. Carroll L; Henry M Appl Opt; 2002 Mar; 41(7):1330-6. PubMed ID: 11900011 [TBL] [Abstract][Full Text] [Related]
18. Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients. Jewell JM; Askins C; Aggarwal ID Appl Opt; 1991 Sep; 30(25):3656-60. PubMed ID: 20706441 [TBL] [Abstract][Full Text] [Related]
19. Method for measuring small optical absorption coefficients with use of a Shack-Hartmann wave-front detector. Yoshida S; Reitze DH; Tanner DB; Mansell JD Appl Opt; 2003 Aug; 42(24):4835-40. PubMed ID: 12952327 [TBL] [Abstract][Full Text] [Related]
20. High-precision diode-laser-based temperature measurement for air refractive index compensation. Hieta T; Merimaa M; Vainio M; Seppä J; Lassila A Appl Opt; 2011 Nov; 50(31):5990-8. PubMed ID: 22086025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]