These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27828103)

  • 1. Weakly diverging to tightly focused Gaussian beams: a single set of analytic expressions.
    Levy U; Silberberg Y
    J Opt Soc Am A Opt Image Sci Vis; 2016 Oct; 33(10):1999-2009. PubMed ID: 27828103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakly diverging to tightly focused Gaussian beams: a single set of analytic expressions: continuation-symmetric beams.
    Levy U; Silberberg Y
    J Opt Soc Am A Opt Image Sci Vis; 2017 Mar; 34(3):331-334. PubMed ID: 28248358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vector propagation of radially polarized Gaussian beams diffracted by an axicon.
    Zhang Y; Wang L; Zheng C
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2542-6. PubMed ID: 16302406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focal shift in tightly focused hybridly polarized Laguerre-Gaussian vector beams with zero radial index.
    Chen Y; Huang S; Chen M; Liu X
    J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1585-1591. PubMed ID: 30183014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A q-parameter approach to analysis of propagation, focusing, and waveguiding of radially polarized Gaussian beams.
    Banerjee PP; Cook G; Evans DR
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jun; 26(6):1366-74. PubMed ID: 19488176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam.
    Dai L; Li JX; Zang WP; Tian JG
    Opt Express; 2011 May; 19(10):9303-8. PubMed ID: 21643185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical calculation of axial optical force on a Rayleigh particle illuminated by Gaussian beams beyond the paraxial approximation.
    Chen J; Ng J; Liu S; Lin Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026607. PubMed ID: 19792272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fields of a radially polarized Gaussian laser beam beyond the paraxial approximation.
    Salamin YI
    Opt Lett; 2006 Sep; 31(17):2619-21. PubMed ID: 16902638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-redistribution signatures in transmission microscopy of Rayleigh and Mie particles.
    Selmke M; Cichos F
    J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2370-84. PubMed ID: 25401348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase compensation of azimuthally polarized j(1) bessel-gaussian laser beams.
    Tovar AA
    Appl Opt; 1998 Jan; 37(3):540-5. PubMed ID: 18268622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical far-field divergence angle of a truncated gaussian beam.
    Drνge EM; Skinner NG; Byrne DM
    Appl Opt; 2000 Sep; 39(27):4918-25. PubMed ID: 18350085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical beam propagation model for clipped focused-Gaussian beams using vector diffraction theory.
    Gillen GD; Seck CM; Guha S
    Opt Express; 2010 Mar; 18(5):4023-40. PubMed ID: 20389417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1835-44. PubMed ID: 26470046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of radially polarized Bessel-Gaussian beams from c-cut Nd:YVO₄ laser.
    Vyas S; Kozawa Y; Sato S
    Opt Lett; 2014 Feb; 39(4):1101-4. PubMed ID: 24562288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fields of a focused linearly polarized Gaussian beam: truncated series versus the complex-source-point spherical-wave representation.
    Salamin YI
    Opt Lett; 2009 Mar; 34(5):683-5. PubMed ID: 19252592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of optical vector beams using a two-mode fiber.
    Viswanathan NK; Inavalli VV
    Opt Lett; 2009 Apr; 34(8):1189-91. PubMed ID: 19370113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial-wave series expansions in spherical coordinates for the acoustic field of vortex beams generated from a finite circular aperture.
    Mitri F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2089-97. PubMed ID: 25474783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tight focusing of radially polarized Gaussian and Bessel-Gauss beams.
    Yew EY; Sheppard CJ
    Opt Lett; 2007 Dec; 32(23):3417-9. PubMed ID: 18059952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical properties of a radially polarized twisted Gaussian Schell-model beam in an underwater turbulent medium.
    Peng X; Liu L; Cai Y; Baykal Y
    J Opt Soc Am A Opt Image Sci Vis; 2017 Jan; 34(1):133-139. PubMed ID: 28059218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vector spherical quasi-Gaussian vortex beams.
    Mitri FG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023205. PubMed ID: 25353593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.