These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27828219)

  • 1. Multiple receivers in a high-resolution near-infrared heterodyne spectrometer.
    Kurtz J; O'Byrne S
    Opt Express; 2016 Oct; 24(21):23838-23848. PubMed ID: 27828219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical heterodyne signal power obtained from finite sized sources of radiation.
    Yura HT
    Appl Opt; 1974 Jan; 13(1):150-7. PubMed ID: 20125936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. System combining the best features of heterodyne and direct detection receivers.
    Brookner E
    Appl Opt; 1971 May; 10(5):1009-11. PubMed ID: 20094593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antenna properties of optical heterodyne receivers.
    Siegman AE
    Appl Opt; 1966 Oct; 5(10):1588-94. PubMed ID: 20057593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-infrared laser heterodyne spectrometer by hollow optical fiber and its newly designed coupler.
    Nakagawa H; Tsukada S; Katagiri T; Kasaba Y; Murata I; Hirahara Y; Matsuura Y; Yamazaki A
    Appl Opt; 2023 Feb; 62(6):A31-A36. PubMed ID: 36821297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of signal to noise ratio in optical free space data links due to background illumination.
    Leeb WR
    Appl Opt; 1989 Aug; 28(16):3443-9. PubMed ID: 20555719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing the Multiplex Disadvantage in Photon-Noise Limited Interferometry Using Cross-Dispersed Spatial Heterodyne Spectrometry.
    Egan MJ; Colón AM; Angel SM; Sharma SK
    Appl Spectrosc; 2021 Feb; 75(2):208-215. PubMed ID: 32662290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study on the Technology of the 4.4 μm Mid-Infrared Laser Heterodyne Spectrum].
    Tan T; Cao ZS; Wang GS; Wang L; Liu K; Huang YB; Chen Wei-dong ; Gao WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1516-9. PubMed ID: 26601358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Frequency Nonlinear Heterodyne Detection. 1: cw Radar and Analog Communications.
    Teich MC; Yen RY
    Appl Opt; 1975 Mar; 14(3):666-79. PubMed ID: 20134950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity limits of an infrared heterodyne spectrometer for astrophysical applications.
    Abbas MM; Mumma MJ; Kostiuk T; Buhl D
    Appl Opt; 1976 Feb; 15(2):427-36. PubMed ID: 20164986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterodyne Fourier transform spectrometer for the near- infrared region.
    Hirai A; Matsumoto H; Lin D; Tagaki C
    Opt Express; 2003 Jun; 11(11):1258-64. PubMed ID: 19465992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption.
    Rodin A; Klimchuk A; Nadezhdinskiy A; Churbanov D; Spiridonov M
    Opt Express; 2014 Jun; 22(11):13825-34. PubMed ID: 24921574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precision heterodyne oxygen-corrected spectrometry: vertical profiling of water and carbon dioxide in the troposphere and lower stratosphere.
    Bomse DS; Tso JE; Flores MM; Miller JH
    Appl Opt; 2020 Mar; 59(7):B10-B17. PubMed ID: 32225691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterodyne spectrometer sensitivity limit for quantum networking.
    Chapman JC; Peters NA
    Appl Opt; 2022 Jun; 61(17):5002-5009. PubMed ID: 36256176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of the generic spatial heterodyne spectrometer and comparison with conventional spectrometer.
    Powell I; Cheben P
    Appl Opt; 2006 Dec; 45(36):9079-86. PubMed ID: 17151746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence.
    Chan KP; Killinger DK; Sugimoto N
    Appl Opt; 1991 Jun; 30(18):2617-27. PubMed ID: 20700251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of atmospheric phase compensation on optical heterodyne power measurements.
    Belmonte A
    Opt Express; 2008 Apr; 16(9):6756-67. PubMed ID: 18545378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power ratio estimation in incoherent backscatter lidar: direct detection with Gaussian noise.
    Rye BJ
    Appl Opt; 1989 Sep; 28(17):3639-46. PubMed ID: 20555749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of simultaneous independent realizations at low carrier-to-noise ratio to improve heterodyne Doppler lidar performance. I. Experimental results.
    Guérit G; Drobinski P; Augère B; Flamant PH
    Appl Opt; 2002 Dec; 41(36):7510-5. PubMed ID: 12510914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THIS: a tuneable heterodyne infrared spectrometer.
    Wirtz D; Sonnabend G; Schieder RT
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Sep; 58(11):2457-63. PubMed ID: 12353696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.