These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27828254)

  • 1. InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product.
    Xie S; Zhou X; Zhang S; Thomson DJ; Chen X; Reed GT; Ng JS; Tan CH
    Opt Express; 2016 Oct; 24(21):24242-24247. PubMed ID: 27828254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of carrier injection profile on low noise thin Al
    Pinel LLG; Dimler SJ; Zhou X; Abdullah S; Zhang S; Tan CH; Ng JS
    Opt Express; 2018 Feb; 26(3):3568-3576. PubMed ID: 29401884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of impact ionization characteristics in In
    Lee S; Winslow M; Grein CH; Kodati SH; Jones AH; Fink DR; Das P; Hayat MM; Ronningen TJ; Campbell JC; Krishna S
    Sci Rep; 2020 Oct; 10(1):16735. PubMed ID: 33028858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton radiation effect on InAs avalanche photodiodes.
    Zhou X; White B; Meng X; Zhang S; Gutierrez M; Robbins M; Rojas LG; Nelms N; Tan CH; Ng JS
    Opt Express; 2017 Feb; 25(3):2818-2825. PubMed ID: 29518998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement in speed and responsivity of uni-traveling carrier photodiodes with GaAs
    Naseem ; Ahmad Z; Chao RL; Chang HS; Ni CJ; Chen HS; Huang JJ; Chou E; Jan YH; Shi JW
    Opt Express; 2019 May; 27(11):15495-15504. PubMed ID: 31163745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit.
    Marshall AR; Ker PJ; Krysa A; David JP; Tan CH
    Opt Express; 2011 Nov; 19(23):23341-9. PubMed ID: 22109211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High gain and low excess noise InGaAs/InP avalanche photodiode with lateral impact ionization.
    Wang R; Tian Y; Li Q; Zhao Y
    Appl Opt; 2020 Mar; 59(7):1980-1984. PubMed ID: 32225716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes.
    Farrell AC; Senanayake P; Hung CH; El-Howayek G; Rajagopal A; Currie M; Hayat MM; Huffaker DL
    Sci Rep; 2015 Dec; 5():17580. PubMed ID: 26627932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. III-V on silicon avalanche photodiodes by heteroepitaxy.
    Yuan Y; Jung D; Sun K; Zheng J; Jones AH; Bowers JE; Campbell JC
    Opt Lett; 2019 Jul; 44(14):3538-3541. PubMed ID: 31305567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Fabrication and Characterization of InAlAs/InGaAs APDs Based on a Mesa-Structure with Polyimide Passivation.
    Liu JJ; Ho WJ; Chen JY; Lin JN; Teng CJ; Yu CC; Li YC; Chang MJ
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-narrowband interference circuits enable low-noise and high-rate photon counting for InGaAs/InP avalanche photodiodes.
    Fan Y; Shi T; Ji W; Zhou L; Ji Y; Yuan Z
    Opt Express; 2023 Feb; 31(5):7515-7522. PubMed ID: 36859880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guard Ring Design to Prevent Edge Breakdown in Double-Diffused Planar InGaAs/InP Avalanche Photodiodes.
    Chen YC; Yan RH; Huang HC; Nieh LH; Lin HH
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. InAlAs/InGaAs avalanche photodiode arrays for free space optical communication.
    Ferraro MS; Clark WR; Rabinovich WS; Mahon R; Murphy JL; Goetz PG; Thomas LM; Burris HR; Moore CI; Waters WD; Vaccaro K; Krejca BD
    Appl Opt; 2015 Nov; 54(31):F182-8. PubMed ID: 26560607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low dark current and high gain-bandwidth product of avalanche photodiodes: optimization and realization.
    Wang H; Yang X; Wang R; He T; Liu K
    Opt Express; 2020 May; 28(11):16211-16229. PubMed ID: 32549448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 45 nm CMOS Avalanche Photodiode with 8.4-GHz Bandwidth.
    Zhi W; Quan Q; Yu P; Jiang Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photon-Trapping Microstructure for InGaAs/Si Avalanche Photodiodes Operating at 1.31 μm.
    Zhang H; Tian Y; Li Q; Ding W; Yu X; Lin Z; Feng X; Zhao Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of thin InAlAs digital alloy avalanche photodiodes.
    Wang W; Yao J; Wang J; Deng Z; Xie Z; Huang J; Lu H; Chen B
    Opt Lett; 2021 Aug; 46(16):3841-3844. PubMed ID: 34388755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 32  Gbps heterogeneously integrated quantum dot waveguide avalanche photodiodes on silicon.
    Tossoun B; Kurczveil G; Srinivasan S; Descos A; Liang D; Beausoleil RG
    Opt Lett; 2021 Aug; 46(16):3821-3824. PubMed ID: 34388750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.
    Martinez NJ; Derose CT; Brock RW; Starbuck AL; Pomerene AT; Lentine AL; Trotter DC; Davids PS
    Opt Express; 2016 Aug; 24(17):19072-81. PubMed ID: 27557187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and Characterization of In
    Shin SH; Shim JP; Jang H; Jang JH
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.