These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27828307)

  • 1. Nyquist pulse shaping using arrayed waveguide grating routers.
    Xie Y; Zhuang L; Zhu C; Lowery AJ
    Opt Express; 2016 Oct; 24(20):22357-22365. PubMed ID: 27828307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon photonic 8 × 8 cyclic Arrayed Waveguide Grating Router for O-band on-chip communication.
    Pitris S; Dabos G; Mitsolidou C; Alexoudi T; De Heyn P; Van Campenhout J; Broeke R; Kanellos GT; Pleros N
    Opt Express; 2018 Mar; 26(5):6276-6284. PubMed ID: 29529819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping.
    Xiang M; Fu S; Tang M; Tang H; Shum P; Liu D
    Opt Express; 2014 Jul; 22(14):17448-57. PubMed ID: 25090558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution, high channel count silicon arrayed waveguide grating router on-chip.
    Huang R; Zhao Y; She X; Liao H; Zhu J; Zhu Z; Liu X; Liu H; Sheng Z; Gan F
    Opt Express; 2023 Apr; 31(9):14308-14316. PubMed ID: 37157298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Arrayed-Waveguide Grating Routers for use as optical OFDM demultiplexers.
    Lowery AJ
    Opt Express; 2010 Jun; 18(13):14129-43. PubMed ID: 20588546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating.
    Zhang H; Gleeson M; Ye N; Pavarelli N; Ouyang X; Zhao J; Kavanagh N; Robert C; Yang H; Morrissey PE; Thomas K; Gocalinska A; Chen Y; Bradley T; Wooler JP; Hayes JR; Numkam Fokoua E; Li Z; Alam SU; Poletti F; Petrovich MN; Richardson DJ; Kelly B; O'Carroll J; Phelan R; Pelucchi E; O'Brien P; Peters F; Corbett B; Gunning F
    Opt Lett; 2015 Jul; 40(14):3308-11. PubMed ID: 26176456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithic silicon photonic 32x32 thin-CLOS AWGR for all-to-all interconnections.
    Fu M; Liu G; Zhang Y; Proietti R; Yoo SJB
    Opt Express; 2023 May; 31(10):16623-16633. PubMed ID: 37157738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-Nyquist-WDM transmission over 7,326-km seven-core fiber with capacity-distance product of 1.03 Exabit/s · km.
    Igarashi K; Tsuritani T; Morita I; Tsuchida Y; Maeda K; Tadakuma M; Saito T; Watanabe K; Imamura K; Sugizaki R; Suzuki M
    Opt Express; 2014 Jan; 22(2):1220-8. PubMed ID: 24515127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology.
    Wang J; Sheng Z; Li L; Pang A; Wu A; Li W; Wang X; Zou S; Qi M; Gan F
    Opt Express; 2014 Apr; 22(8):9395-403. PubMed ID: 24787827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low SNR difference Nyquist-WDM channels with optical sinc-shaped pulses based on flat electro-optic frequency combs.
    Dong F; Chen G; Liu Z; Lin P; Zhang Y; Ma W; Wang T; Liu Z
    Appl Opt; 2020 Dec; 59(36):11389-11395. PubMed ID: 33362064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection.
    Dong Z; Yu J; Chien HC; Chi N; Chen L; Chang GK
    Opt Express; 2011 Jun; 19(12):11100-5. PubMed ID: 21716338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inserting a cyclic prefix using Arrayed-Waveguide Grating Routers in all-optical OFDM transmitters.
    Lowery AJ
    Opt Express; 2012 Apr; 20(9):9742-54. PubMed ID: 22535066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform-loss cyclic arrayed waveguide grating router using a mode-field converter based on a slab coupler and auxiliary waveguides.
    Chen Y; Wang S; Lang T; He JJ
    Opt Lett; 2019 Jan; 44(2):211-214. PubMed ID: 30644863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint digital signal processing for superchannel coherent optical communication systems.
    Liu C; Pan J; Detwiler T; Stark A; Hsueh YT; Chang GK; Ralph SE
    Opt Express; 2013 Apr; 21(7):8342-56. PubMed ID: 23571924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional (3D) monolithically integrated photodetector and WDM receiver based on bulk silicon wafer.
    Song J; Luo X; Tu X; Jia L; Fang Q; Liow TY; Yu M; Lo GQ
    Opt Express; 2014 Aug; 22(16):19546-54. PubMed ID: 25321037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolithic integrated cyclic 64-channel AWG with MZI filters and arrayed vertical reflecting mirrors for WDM-PON application.
    Wu X; Liu C; Liu W; Yuan Z; Wu K; Tang F; Chen H; Liu W; Yang L; Zhang J; Liang X
    Appl Opt; 2019 Oct; 58(30):8282-8289. PubMed ID: 31674500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systems performance comparison of three all-optical generation schemes for quasi-Nyquist WDM.
    Lowery AJ; Xie Y; Zhu C
    Opt Express; 2015 Aug; 23(17):21706-18. PubMed ID: 26368149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable AWGR based on LNOI with a tunable central wavelength and bandwidth used in elastic optical networking.
    Wu Q; Ji W; Yin R; Wang Y; Gao S; Xue X
    Appl Opt; 2023 Sep; 62(25):6631-6638. PubMed ID: 37706795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase noise tolerant inter-carrier-interference cancellation for WDM superchannels with sub-Nyquist channel spacing.
    Yao S; Fu S; Li J; Tang M; Shum P; Liu D
    Opt Express; 2013 Sep; 21(18):21569-78. PubMed ID: 24104031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable and real-time high-bandwidth Nyquist signal detection with low-bandwidth in silicon photonics.
    Misra A; Kress C; Singh K; Meier J; Schwabe T; Preussler S; Scheytt JC; Schneider T
    Opt Express; 2022 Apr; 30(8):13776-13789. PubMed ID: 35472983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.