These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27828338)

  • 1. Optical back propagation for compensating nonlinear impairments in fiber optic links with ROADMs.
    Liang X; Kumar S
    Opt Express; 2016 Oct; 24(20):22682-22692. PubMed ID: 27828338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.
    Liang X; Kumar S
    Opt Express; 2017 Mar; 25(5):5031-5043. PubMed ID: 28380769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ideal optical backpropagation of scalar NLSE using dispersion-decreasing fibers for WDM transmission.
    Liang X; Kumar S; Shao J
    Opt Express; 2013 Nov; 21(23):28668-75. PubMed ID: 24514378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-stage perturbation theory for compensating intra-channel nonlinear impairments in fiber-optic links.
    Liang X; Kumar S
    Opt Express; 2014 Dec; 22(24):29733-45. PubMed ID: 25606904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear and ROADM induced penalties in 28 Gbaud dynamic optical mesh networks employing electronic signal processing.
    Rafique D; Ellis AD
    Opt Express; 2011 Aug; 19(18):16739-48. PubMed ID: 21935036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations.
    Hu H; Jopson RM; Gnauck AH; Randel S; Chandrasekhar S
    Opt Express; 2017 Feb; 25(3):1618-1628. PubMed ID: 29519016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman-enhanced optical phase conjugator in WDM transmission systems.
    Huang C; Shu C
    Opt Express; 2018 Apr; 26(8):10274-10281. PubMed ID: 29715966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs.
    Yu J; Zhang J; Dong Z; Jia Z; Chien HC; Cai Y; Xiao X; Li X
    Opt Express; 2013 Jul; 21(13):15686-91. PubMed ID: 23842354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear phase noise reduction using digital back propagation and midpoint optical phase conjugation.
    Rahbarfam S; Kumar S
    Opt Express; 2019 Mar; 27(6):8968-8982. PubMed ID: 31052707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission.
    Rafique D; Zhao J; Ellis AD
    Opt Express; 2011 Mar; 19(6):5219-24. PubMed ID: 21445158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated digital back propagation based on perturbation theory.
    Liang X; Kumar S
    Opt Express; 2015 Jun; 23(11):14655-65. PubMed ID: 26072825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of nonlinear and polarization effects in coherent systems.
    Xie C
    Opt Express; 2011 Dec; 19(26):B915-30. PubMed ID: 22274120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning-based digital back propagation to compensate for fiber nonlinearity considering self-phase and cross-phase modulation for wavelength-division multiplexed systems.
    Inoue T; Matsumoto R; Namiki S
    Opt Express; 2022 Apr; 30(9):14851-14872. PubMed ID: 35473220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear performance of multi-granularity orthogonal transmission systems with frequency division multiplexing.
    Zhang F; Yang C; Fang X; Zhang T; Chen Z
    Opt Express; 2013 Mar; 21(5):6115-30. PubMed ID: 23482180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of digital phase-sensitive boosting to extend signal reach for long-haul WDM systems using optical phase-conjugated copy.
    Tian Y; Huang YK; Zhang S; Prucnal PR; Wang T
    Opt Express; 2013 Feb; 21(4):5099-106. PubMed ID: 23482044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinearity compensation using dispersion-folded digital backward propagation.
    Zhu L; Li G
    Opt Express; 2012 Jun; 20(13):14362-70. PubMed ID: 22714497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital compensation of cross-phase modulation distortions using perturbation technique for dispersion-managed fiber-optic systems.
    Liang X; Kumar S; Shao J; Malekiha M; Plant DV
    Opt Express; 2014 Aug; 22(17):20634-45. PubMed ID: 25321268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-subcarrier flexible bit-loading enabled capacity improvement in meshed optical networks with cascaded ROADMs.
    Xiang M; Zhuge Q; Qiu M; Zhang F; Zhou X; Tang M; Fu S; Plant DV
    Opt Express; 2017 Oct; 25(21):25046-25058. PubMed ID: 29041176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symbol division multiplexing in optical fiber communication systems.
    Dong Z; Yu J; Chen Y; Li F; Xin X
    Opt Express; 2022 Apr; 30(9):14998-15007. PubMed ID: 35473232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of DSP-based nonlinear equalizers for intra-channel nonlinearity compensation in coherent optical OFDM.
    Giacoumidis E; Mhatli S; Nguyen T; Le ST; Aldaya I; McCarthy ME; Ellis AD; Eggleton BJ
    Opt Lett; 2016 Jun; 41(11):2509-12. PubMed ID: 27244401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.