These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27828344)

  • 1. Optically transparent microwave screens based on engineered graphene layers.
    Grande M; Bianco GV; Vincenti MA; de Ceglia D; Capezzuto P; Petruzzelli V; Scalora M; Bruno G; D'Orazio A
    Opt Express; 2016 Oct; 24(20):22788-22795. PubMed ID: 27828344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene.
    Grande M; Bianco GV; Perna FM; Capriati V; Capezzuto P; Scalora M; Bruno G; D'Orazio A
    Sci Rep; 2019 Apr; 9(1):5463. PubMed ID: 30940845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically Transparent Broadband Microwave Absorber by Graphene and Metallic Rings.
    Ma L; Xu H; Lu Z; Tan J
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17727-17738. PubMed ID: 35389630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.
    Grande M; Bianco GV; Vincenti MA; de Ceglia D; Capezzuto P; Scalora M; D'Orazio A; Bruno G
    Sci Rep; 2015 Nov; 5():17083. PubMed ID: 26603112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity.
    Wang H; Zhang Y; Ji C; Zhang C; Liu D; Zhang Z; Lu Z; Tan J; Guo LJ
    Adv Sci (Weinh); 2019 Oct; 6(19):1901320. PubMed ID: 31592425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Terahertz Transparent Graphene-Based Absorber.
    D'Aloia AG; D'Amore M; Sarto MS
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32353933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optically transparent metasurface Salisbury screen with wideband microwave absorption.
    Li T; Chen K; Ding G; Zhao J; Jiang T; Feng Y
    Opt Express; 2018 Dec; 26(26):34384-34395. PubMed ID: 30650861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance.
    Lu Z; Ma L; Tan J; Wang H; Ding X
    Nanoscale; 2016 Sep; 8(37):16684-16693. PubMed ID: 27714109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz.
    Wu B; Tuncer HM; Naeem M; Yang B; Cole MT; Milne WI; Hao Y
    Sci Rep; 2014 Feb; 4():4130. PubMed ID: 24549254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-Based Optically Transparent Metasurface Capable of Dual-Polarized Modulation for Electromagnetic Stealth.
    Zhang J; Shao L; Li Z; Zhang C; Zhu W
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31075-31084. PubMed ID: 35770880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers.
    Deng R; Li M; Muneer B; Zhu Q; Shi Z; Song L; Zhang T
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrowband transparent absorbers based on ellipsoidal nanoparticles.
    Monti A; Alù A; Toscano A; Bilotti F
    Appl Opt; 2017 Sep; 56(27):7533-7538. PubMed ID: 29047728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible and transparent broadband microwave metasurface absorber based on multipolar interference engineering.
    Luo Y; Huang L; Ding J; Liu W; Sun B; Xie C; Yang H; Wu J
    Opt Express; 2022 Feb; 30(5):7694-7707. PubMed ID: 35299525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lightweight Machine-Learning Model for Efficient Design of Graphene-Based Microwave Metasurfaces for Versatile Absorption Performance.
    Chen N; He C; Zhu W
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metasurface Salisbury screen: achieving ultra-wideband microwave absorption.
    Zhou Z; Chen K; Zhao J; Chen P; Jiang T; Zhu B; Feng Y; Li Y
    Opt Express; 2017 Nov; 25(24):30241-30252. PubMed ID: 29221055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance.
    Zheng HY; Jin XR; Park JW; Lu YH; Rhee JY; Jang WH; Cheong H; Lee YP
    Opt Express; 2012 Oct; 20(21):24002-9. PubMed ID: 23188367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration.
    Alici KB; Turhan AB; Soukoulis CM; Ozbay E
    Opt Express; 2011 Jul; 19(15):14260-7. PubMed ID: 21934790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically transparent microwave absorber based on water-based moth-eye structures.
    Kwon H; D'Aguanno G; Alú A
    Opt Express; 2021 Mar; 29(6):9190-9198. PubMed ID: 33820351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth.
    Chen PY; Farhat M; Bağcı H
    Nanotechnology; 2015 Apr; 26(16):164002. PubMed ID: 25824491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Conductive Gels for Optically Manipulatable Microwave Stealth Structures.
    Song WL; Zhang YJ; Zhang KL; Wang K; Zhang L; Chen LL; Huang Y; Chen M; Lei H; Chen H; Fang D
    Adv Sci (Weinh); 2020 Jan; 7(2):1902162. PubMed ID: 31993290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.