These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27828517)

  • 1. Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting.
    Shin WH; Yang SH; Kwon DH; Han SK
    Opt Express; 2016 Oct; 24(22):A1300-A1305. PubMed ID: 27828517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optoelectronics Interfaces for a VLC System for UHD Audio-Visual Content Transmission in a Passenger Van: HW Design.
    Del Valle Morales CI; Betancourt Perlaza JS; Torres Zafra JC; Martinez-Sarriegui I; Sánchez-Pena JM
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Series-connected solar array for high-speed underwater wireless optical links.
    Tong Z; Yang X; Zhang H; Dai Y; Chen X; Xu J
    Opt Lett; 2022 Mar; 47(5):1013-1016. PubMed ID: 35230278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity-reception UWOC system using solar panel array and maximum ratio combining.
    Chen X; Lyu W; Yu C; Qiu Y; Shao Y; Zhang C; Zhao M; Xu J; Chen LK
    Opt Express; 2019 Nov; 27(23):34284-34297. PubMed ID: 31878479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells.
    Kong M; Lin J; Kang CH; Shen C; Guo Y; Sun X; Sait M; Weng Y; Zhang H; Ng TK; Ooi BS
    Opt Express; 2019 Nov; 27(24):34542-34551. PubMed ID: 31878642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Photosynthesis and Photovoltaics: A Hybrid Energy-Harvesting System Using Optical Antennas.
    Tamang A; Parsons R; Lertchaiwarakul C; Palanchoke U; Kojima H; Salleo A; Nakamura M; Knipp D
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40261-40268. PubMed ID: 32805798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.
    Islim MS; Haas H
    Opt Express; 2016 May; 24(11):11932-49. PubMed ID: 27410116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Illumination, data transmission, and energy harvesting: the threefold advantage of VLC.
    Sandalidis HG; Vavoulas A; Tsiftsis TA; Vaiopoulos N
    Appl Opt; 2017 Apr; 56(12):3421-3427. PubMed ID: 28430208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Demand Sensor Node Wake-Up Using Solar Panels and Visible Light Communication.
    Carrascal C; Demirkol I; Paradells J
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27011190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions.
    Zhou Y; Zhang S; Ding Y; Zhang L; Zhang C; Zhang X; Zhao Y; Yu G
    Adv Mater; 2018 Aug; 30(31):e1802294. PubMed ID: 29904958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Dot-Based Composite Films for Simultaneously Harvesting Raindrop Energy and Boosting Solar Energy Conversion Efficiency in Hybrid Cells.
    Wang L; Wang Y; Wang H; Xu G; Döring A; Daoud WA; Xu J; Rogach AL; Xi Y; Zi Y
    ACS Nano; 2020 Aug; 14(8):10359-10369. PubMed ID: 32686934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical-electrical-thermal optimization of plasmon-enhanced perovskite solar cells.
    Ren H; Ren X; Niu K; Wang S; Huang Z; Wu X
    Phys Chem Chem Phys; 2020 Aug; 22(30):17068-17074. PubMed ID: 32643730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcutaneous Solar Energy Harvesting for Self-Powered Wireless Implantable Sensor Systems.
    Wu T; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4657-4660. PubMed ID: 30441389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on image signal receiving performance of photodiodes and solar panel detectors in an underground facility visible light communication system.
    Zhao W; Kamezaki M; Yamaguchi K; Konno M; Onuki A; Sugano S
    Opt Express; 2021 Jan; 29(2):692-705. PubMed ID: 33726300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.
    Pellet N; Gao P; Gregori G; Yang TY; Nazeeruddin MK; Maier J; Grätzel M
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3151-7. PubMed ID: 24554633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchal Light-Harvesting Aggregates and Their Potential for Solar Energy Applications.
    McHale JL
    J Phys Chem Lett; 2012 Mar; 3(5):587-97. PubMed ID: 26286154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Conversion Analysis of Multilayered Triboelectric Nanogenerators for Synergistic Rain and Solar Energy Harvesting.
    Zheng Y; Liu T; Wu J; Xu T; Wang X; Han X; Cui H; Xu X; Pan C; Li X
    Adv Mater; 2022 Jul; 34(28):e2202238. PubMed ID: 35538660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous transmission, detection, and energy harvesting.
    Gao X; Jia B; Ye Z; Wang L; Fu K; Liu P; Hu F; Zhu H; Wang Y
    Opt Lett; 2021 May; 46(9):2075-2078. PubMed ID: 33929422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared light harvesting of upconverting NaYF
    Liu D; Wang Q; Wang Q
    Beilstein J Nanotechnol; 2018; 9():2788-2793. PubMed ID: 30498651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion efficiency of broad-band rectennas for solar energy harvesting applications.
    Briones E; Alda J; González FJ
    Opt Express; 2013 May; 21 Suppl 3():A412-8. PubMed ID: 24104428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.