These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27828525)

  • 1. Effective medium analysis of absorption enhancement in short-pitch metal grating incorporated organic solar cells.
    Zhang Y; Cui Y; Wang W; Fung KH; Ji T; Hao Y; Zhu F
    Opt Express; 2016 Oct; 24(22):A1408-A1418. PubMed ID: 27828525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband and wide-angle light absorption of organic solar cells based on multiple-depths metal grating.
    Liu X; Wang D; Yang Y; Chen ZH; Fei H; Cao B; Zhang M; Cui Y; Hao Y; Jian A
    Opt Express; 2019 Jun; 27(12):A596-A610. PubMed ID: 31252840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmon-Optical and Plasmon-Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars.
    Ren X; Cheng J; Zhang S; Li X; Rao T; Huo L; Hou J; Choy WC
    Small; 2016 Oct; 12(37):5200-5207. PubMed ID: 27487460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells.
    Lee S; In S; Mason DR; Park N
    Opt Express; 2013 Feb; 21(4):4055-60. PubMed ID: 23481940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells.
    Kim I; Lee TS; Jeong DS; Lee WS; Kim WM; Lee KS
    Opt Express; 2013 Jul; 21 Suppl 4():A669-76. PubMed ID: 24104493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.
    Hall AS; Faryad M; Barber GD; Liu L; Erten S; Mayer TS; Lakhtakia A; Mallouk TE
    ACS Nano; 2013 Jun; 7(6):4995-5007. PubMed ID: 23730702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband Absorption Enhancement in Polymer Solar Cells Using Highly Efficient Plasmonic Heterostructured Nanocrystals.
    Wang H; Ding Y; Chen W; Liu Y; Tang D; Cui G; Li W; Shi J; Bo Z
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):30919-30924. PubMed ID: 30160097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics.
    Bai W; Gan Q; Song G; Chen L; Kafafi Z; Bartoli F
    Opt Express; 2010 Nov; 18 Suppl 4():A620-30. PubMed ID: 21165095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells.
    Raja W; Bozzola A; Zilio P; Miele E; Panaro S; Wang H; Toma A; Alabastri A; De Angelis F; Zaccaria RP
    Sci Rep; 2016 Apr; 6():24539. PubMed ID: 27080420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.
    Petefish JW; Hillier AC
    Anal Chem; 2015 Nov; 87(21):10862-70. PubMed ID: 26458177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined plasmonic gratings in organic solar cells.
    Shen H; Maes B
    Opt Express; 2011 Nov; 19 Suppl 6():A1202-10. PubMed ID: 22109616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement in photocurrent by dual-interface period-mismatched rotating rectangle grating-based c-Si solar cells.
    Chen K; Wu S; Yu Y; Zheng N; Wu R; Zheng H
    Appl Opt; 2021 Jun; 60(16):4938-4947. PubMed ID: 34143056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles.
    Tsai FJ; Wang JY; Huang JJ; Kiang YW; Yang CC
    Opt Express; 2010 Jun; 18 Suppl 2():A207-20. PubMed ID: 20588590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption.
    In S; Park N
    Sci Rep; 2016 Feb; 6():21784. PubMed ID: 26902974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement and tunability of active plasmonic by multilayer grating coupled emission.
    Chiu NF; Yu C; Nien SY; Lee JH; Kuan CH; Wu KC; Lee CK; Lin CW
    Opt Express; 2007 Sep; 15(18):11608-15. PubMed ID: 19547520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal.
    Zhu LH; Shao MR; Peng RW; Fan RH; Huang XR; Wang M
    Opt Express; 2013 May; 21 Suppl 3():A313-23. PubMed ID: 24104419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
    Petefish JW; Hillier AC
    Anal Chem; 2014 Mar; 86(5):2610-7. PubMed ID: 24499196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Optical Confinement Enriching the Power Conversion Efficiency of Integrated 3D Grating Organic Solar Cell.
    Zohar M; Avrahamy R; Hava S; Milgrom B; Rimon E
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance.
    Lee S; Mason DR; In S; Park N
    Opt Express; 2014 Jun; 22 Suppl 4():A1145-52. PubMed ID: 24978077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.