These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27828557)

  • 1. Cylindrical chains of water drops condensing on microstructured lubricant-infused surfaces.
    Kajiya T; Wooh S; Lee Y; Char K; Vollmer D; Butt HJ
    Soft Matter; 2016 Nov; 12(46):9377-9382. PubMed ID: 27828557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Drop Evaporation on Slippery Liquid-Infused Porous Surfaces (SLIPS): Effect of Lubricant Thickness, Viscosity, Ridge Height, and Pattern Geometry.
    Üçüncüoğlu R; Erbil HY
    Langmuir; 2023 May; 39(18):6514-6528. PubMed ID: 37103333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces.
    Kajiya T; Schellenberger F; Papadopoulos P; Vollmer D; Butt HJ
    Sci Rep; 2016 Apr; 6():23687. PubMed ID: 27040483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Durable Lubricant-Impregnated Surfaces for Water Collection under Extremely Severe Working Conditions.
    Jing X; Guo Z
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35949-35958. PubMed ID: 31411451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous Charging of Drops on Lubricant-Infused Surfaces.
    Li S; Bista P; Weber SAL; Kappl M; Butt HJ
    Langmuir; 2022 Oct; 38(41):12610-12616. PubMed ID: 36190842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine Antifouling Behavior of Lubricant-Infused Nanowrinkled Polymeric Surfaces.
    Ware CS; Smith-Palmer T; Peppou-Chapman S; Scarratt LRJ; Humphries EM; Balzer D; Neto C
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4173-4182. PubMed ID: 29250952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infusing Lubricant onto Erasable Microstructured Surfaces toward Guided Sliding of Liquid Droplets.
    Chen XC; Ren KF; Wang J; Lei WX; Ji J
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1959-1967. PubMed ID: 28004572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condensation of Satellite Droplets on Lubricant-Cloaked Droplets.
    Ge Q; Raza A; Li H; Sett S; Miljkovic N; Zhang T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22246-22255. PubMed ID: 32306727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobility of Aqueous and Binary Mixture Drops on Lubricating Fluid-Coated Slippery Surfaces.
    Sharma M; Roy PK; Barman J; Khare K
    Langmuir; 2019 Jun; 35(24):7672-7679. PubMed ID: 31117726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet Sorting and Manipulation on Patterned Two-Phase Slippery Lubricant-Infused Surface.
    Paulssen D; Hardt S; Levkin PA
    ACS Appl Mater Interfaces; 2019 May; 11(17):16130-16138. PubMed ID: 30932477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer.
    Peppou-Chapman S; Hong JK; Waterhouse A; Neto C
    Chem Soc Rev; 2020 Jun; 49(11):3688-3715. PubMed ID: 32396597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Frost Forms and Grows on Lubricated Micro- and Nanostructured Surfaces.
    Hauer L; Wong WSY; Donadei V; Hegner KI; Kondic L; Vollmer D
    ACS Nano; 2021 Mar; 15(3):4658-4668. PubMed ID: 33647197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and durability characterization of superhydrophobic and lubricant-infused surfaces.
    Stoddard R; Nithyanandam K; Pitchumani R
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):662-672. PubMed ID: 34628325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depletion of the Lubricant from Lubricant-Infused Surfaces due to an Air/Water Interface.
    Peppou-Chapman S; Neto C
    Langmuir; 2021 Mar; 37(10):3025-3037. PubMed ID: 33683128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional Passive Transport of Microdroplets in Oil-Infused Diverging Channels for Effective Condensate Removal.
    Li H; Aili A; Alhosani MH; Ge Q; Zhang T
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20910-20919. PubMed ID: 29792417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery" Surfaces: A Brief Study on the Functions and Applications.
    Cao M; Guo D; Yu C; Li K; Liu M; Jiang L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3615-23. PubMed ID: 26447551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality.
    Sett S; Yan X; Barac G; Bolton LW; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36400-36408. PubMed ID: 28950702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced condensation on lubricant-impregnated nanotextured surfaces.
    Anand S; Paxson AT; Dhiman R; Smith JD; Varanasi KK
    ACS Nano; 2012 Nov; 6(11):10122-9. PubMed ID: 23030619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.