These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2782875)
1. 31P nuclear magnetic resonance study of the effect of azide on xylose fermentation by Candida tropicalis. Lohmeier-Vogel E; Skoog K; Vogel H; Hahn-Hägerdal B Appl Environ Microbiol; 1989 Aug; 55(8):1974-80. PubMed ID: 2782875 [TBL] [Abstract][Full Text] [Related]
2. Phosphorus-31 and carbon-13 nuclear magnetic resonance study of glucose and xylose metabolism in agarose-immobilized Candida tropicalis. Lohmeier-Vogel EM; Hahn-Hägerdal B; Vogel HJ Appl Environ Microbiol; 1995 Apr; 61(4):1420-5. PubMed ID: 7747962 [TBL] [Abstract][Full Text] [Related]
3. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in Candida tropicalis cell suspensions. Lohmeier-Vogel EM; Hahn-Hägerdal B; Vogel HJ Appl Environ Microbiol; 1995 Apr; 61(4):1414-9. PubMed ID: 7747961 [TBL] [Abstract][Full Text] [Related]
4. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Walther T; Hensirisak P; Agblevor FA Bioresour Technol; 2001 Feb; 76(3):213-20. PubMed ID: 11198172 [TBL] [Abstract][Full Text] [Related]
5. Controlled transient changes reveal differences in metabolite production in two Candida yeasts. Granström T; Leisola M Appl Microbiol Biotechnol; 2002 Mar; 58(4):511-6. PubMed ID: 11954799 [TBL] [Abstract][Full Text] [Related]
6. Model compound studies: influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Walthers T; Hensirisak P; Agblevor FA Appl Biochem Biotechnol; 2001; 91-93():423-35. PubMed ID: 11963871 [TBL] [Abstract][Full Text] [Related]
7. Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production. Yuvadetkun P; Leksawasdi N; Boonmee M Prep Biochem Biotechnol; 2017 Mar; 47(3):268-275. PubMed ID: 27552485 [TBL] [Abstract][Full Text] [Related]
8. [Specific features of fermentation of D-xylose and D-glucose by xylose-assimilating yeasts]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Prikl Biokhim Mikrobiol; 2003; 39(3):302-6. PubMed ID: 12754827 [TBL] [Abstract][Full Text] [Related]
9. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Oh DK; Kim SY Appl Microbiol Biotechnol; 1998 Oct; 50(4):419-25. PubMed ID: 9830092 [TBL] [Abstract][Full Text] [Related]
10. Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis. Kastner JR; Eiteman MA; Lee SA Appl Microbiol Biotechnol; 2003 Nov; 63(1):96-100. PubMed ID: 12750853 [TBL] [Abstract][Full Text] [Related]
11. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Lee JK; Koo BS; Kim SY Appl Environ Microbiol; 2003 Oct; 69(10):6179-88. PubMed ID: 14532079 [TBL] [Abstract][Full Text] [Related]
12. Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during D-xylose fermentation by Candida shehatae. Palnitkar S; Lachke A Can J Microbiol; 1992 Mar; 38(3):258-60. PubMed ID: 1393828 [TBL] [Abstract][Full Text] [Related]
13. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
14. Development of a more efficient process for production of fuel ethanol from bamboo. Sun ZY; Wang T; Tan L; Tang YQ; Kida K Bioprocess Biosyst Eng; 2015 Jun; 38(6):1033-43. PubMed ID: 25605029 [TBL] [Abstract][Full Text] [Related]
15. Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984. Li Y; Park JY; Shiroma R; Ike M; Tokuyasu K Appl Biochem Biotechnol; 2012 Apr; 166(7):1781-90. PubMed ID: 22328261 [TBL] [Abstract][Full Text] [Related]
16. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7. Ge J; Du R; Song G; Zhang Y; Ping W J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826 [TBL] [Abstract][Full Text] [Related]
17. The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Martins GM; Bocchini-Martins DA; Bezzerra-Bussoli C; Pagnocca FC; Boscolo M; Monteiro DA; Silva RD; Gomes E Braz J Microbiol; 2018; 49(1):162-168. PubMed ID: 28888830 [TBL] [Abstract][Full Text] [Related]
18. Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production. Misra S; Raghuwanshi S; Gupta P; Dutt K; Saxena RK Antonie Van Leeuwenhoek; 2012 Feb; 101(2):393-402. PubMed ID: 21956659 [TBL] [Abstract][Full Text] [Related]
19. [Study on xylose fermentation by Neurospora crassa]. Zhang X; Zhu D; Wang D; Lin J; Qu Y; Yu S Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):466-72. PubMed ID: 16276921 [TBL] [Abstract][Full Text] [Related]
20. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media. Mussatto SI; Silva CJ; Roberto IC Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]