These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2782875)
21. The influence of pH and aeration rate on the fermentation of D-xylose by Candida shehatae. Sánchez S; Bravo V; Castro E; Moya AJ; Camacho F Enzyme Microb Technol; 1997 Oct; 21(5):355-60. PubMed ID: 9322374 [TBL] [Abstract][Full Text] [Related]
22. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. Kim JH; Han KC; Koh YH; Ryu YW; Seo JH J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of inoculum of Candida guilliermondii grown in presence of glucose on xylose reductase and xylitol dehydrogenase activities and xylitol production during batch fermentation of sugarcane bagasse hydrolysate. da Silva DD; das Graças de Almeida Felipe M; de Mancilha IM; da Silva SS Appl Biochem Biotechnol; 2005; 121-124():427-37. PubMed ID: 15917619 [TBL] [Abstract][Full Text] [Related]
24. Xylitol production from a mutant strain of Candida tropicalis. Jeon YJ; Shin HS; Rogers PL Lett Appl Microbiol; 2011 Jul; 53(1):106-13. PubMed ID: 21554342 [TBL] [Abstract][Full Text] [Related]
25. Metabolic study of the adaptation of the yeast Candida guilliermondii to sugarcane bagasse hydrolysate. Sene L; Converti A; Zilli M; Felipe MG; Silva SS Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):738-43. PubMed ID: 11778887 [TBL] [Abstract][Full Text] [Related]
26. Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663. Wannawilai S; Lee WC; Chisti Y; Sirisansaneeyakul S J Biotechnol; 2017 Jan; 241():147-157. PubMed ID: 27899337 [TBL] [Abstract][Full Text] [Related]
27. Effects of initial pH on biological synthesis of xylitol using xylose-rich hydrolysate. Morita TA; Silva SS; Felipe MG Appl Biochem Biotechnol; 2000; 84-86():751-9. PubMed ID: 10849833 [TBL] [Abstract][Full Text] [Related]
28. [Metabolic engineering for improving ethanol fermentation of xylose by wild yeast]. Zhang L; Zhang L; Ding Z; Wang Z; Shi G Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):950-6. PubMed ID: 18807975 [TBL] [Abstract][Full Text] [Related]
29. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Mateo S; Puentes JG; Moya AJ; Sánchez S Bioresour Technol; 2015 Aug; 190():1-6. PubMed ID: 25916261 [TBL] [Abstract][Full Text] [Related]
30. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025 [TBL] [Abstract][Full Text] [Related]
31. Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition. Queiroz SS; Oliva B; Silva TF; Segato F; Felipe MGA Appl Microbiol Biotechnol; 2022 Jun; 106(12):4587-4606. PubMed ID: 35708749 [TBL] [Abstract][Full Text] [Related]
32. Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3.1602. Zhang Z; Qu Y; Zhang X; Lin J Appl Biochem Biotechnol; 2008 Mar; 145(1-3):39-51. PubMed ID: 18425610 [TBL] [Abstract][Full Text] [Related]
33. Production of xylitol from Candida tropicalis by using an oxidation-reduction potential-stat controlled fermentation. Sheu DC; Duan KJ; Jou SR; Chen YC; Chen CW Biotechnol Lett; 2004 Feb; 26(4):2065-9. PubMed ID: 15055777 [TBL] [Abstract][Full Text] [Related]