These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27828955)

  • 41. Correction: Genome-wide physical activity interactions in adiposity - A meta-analysis of 200,452 adults.
    Graff M; Scott RA; Justice AE; Young KL; Feitosa MF; Barata L; Winkler TW; Chu AY; Mahajan A; Hadley D; Xue L; Workalemahu T; Heard-Costa NL; den Hoed M; Ahluwalia TS; Qi Q; Ngwa JS; Renström F; Quaye L; Eicher JD; Hayes JE; Cornelis M; Kutalik Z; Lim E; Luan J; Huffman JE; Zhang W; Zhao W; Griffin PJ; Haller T; Ahmad S; Marques-Vidal PM; Bien S; Yengo L; Teumer A; Smith AV; Kumari M; Harder MN; Justesen JM; Kleber ME; Hollensted M; Lohman K; Rivera NV; Whitfield JB; Zhao JH; Stringham HM; Lyytikäinen LP; Huppertz C; Willemsen G; Peyrot WJ; Wu Y; Kristiansson K; Demirkan A; Fornage M; Hassinen M; Bielak LF; Cadby G; Tanaka T; Mägi R; van der Most PJ; Jackson AU; Bragg-Gresham JL; Vitart V; Marten J; Navarro P; Bellis C; Pasko D; Johansson Å; Snitker S; Cheng YC; Eriksson J; Lim U; Aadahl M; Adair LS; Amin N; Balkau B; Auvinen J; Beilby J; Bergman RN; Bergmann S; Bertoni AG; Blangero J; Bonnefond A; Bonnycastle LL; Borja JB; Brage S; Busonero F; Buyske S; Campbell H; Chines PS; Collins FS; Corre T; Smith GD; Delgado GE; Dueker N; Dörr M; Ebeling T; Eiriksdottir G; Esko T; Faul JD; Fu M; Færch K; Gieger C; Gläser S; Gong J; Gordon-Larsen P; Grallert H; Grammer TB; Grarup N; van Grootheest G; Harald K; Hastie ND; Havulinna AS; Hernandez D; Hindorff L; Hocking LJ; Holmens OL; Holzapfel C; Hottenga JJ; Huang J; Huang T; Hui J; Huth C; Hutri-Kähönen N; James AL; Jansson JO; Jhun MA; Juonala M; Kinnunen L; Koistinen HA; Kolcic I; Komulainen P; Kuusisto J; Kvaløy K; Kähönen M; Lakka TA; Launer LJ; Lehne B; Lindgren CM; Lorentzon M; Luben R; Marre M; Milaneschi Y; Monda KL; Montgomery GW; De Moor MHM; Mulas A; Müller-Nurasyid M; Musk AW; Männikkö R; Männistö S; Narisu N; Nauck M; Nettleton JA; Nolte IM; Oldehinkel AJ; Olden M; Ong KK; Padmanabhan S; Paternoster L; Perez J; Perola M; Peters A; Peters U; Peyser PA; Prokopenko I; Puolijoki H; Raitakari OT; Rankinen T; Rasmussen-Torvik LJ; Rawal R; Ridker PM; Rose LM; Rudan I; Sarti C; Sarzynski MA; Savonen K; Scott WR; Sanna S; Shuldiner AR; Sidney S; Silbernagel G; Smith BH; Smith JA; Snieder H; Stančáková A; Sternfeld B; Swift AJ; Tammelin T; Tan ST; Thorand B; Thuillier D; Vandenput L; Vestergaard H; van Vliet-Ostaptchouk JV; Vohl MC; Völker U; Waeber G; Walker M; Wild S; Wong A; Wright AF; Zillikens MC; Zubair N; Haiman CA; Lemarchand L; Gyllensten U; Ohlsson C; Hofman A; Rivadeneira F; Uitterlinden AG; Pérusse L; Wilson JF; Hayward C; Polasek O; Cucca F; Hveem K; Hartman CA; Tönjes A; Bandinelli S; Palmer LJ; Kardia SLR; Rauramaa R; Sørensen TIA; Tuomilehto J; Salomaa V; Penninx BWJH; de Geus EJC; Boomsma DI; Lehtimäki T; Mangino M; Laakso M; Bouchard C; Martin NG; Kuh D; Liu Y; Linneberg A; März W; Strauch K; Kivimäki M; Harris TB; Gudnason V; Völzke H; Qi L; Järvelin MR; Chambers JC; Kooner JS; Froguel P; Kooperberg C; Vollenweider P; Hallmans G; Hansen T; Pedersen O; Metspalu A; Wareham NJ; Langenberg C; Weir DR; Porteous DJ; Boerwinkle E; Chasman DI; ; ; ; Abecasis GR; Barroso I; McCarthy MI; Frayling TM; O'Connell JR; van Duijn CM; Boehnke M; Heid IM; Mohlke KL; Strachan DP; Fox CS; Liu CT; Hirschhorn JN; Klein RJ; Johnson AD; Borecki IB; Franks PW; North KE; Cupples LA; Loos RJF; Kilpeläinen TO
    PLoS Genet; 2017 Aug; 13(8):e1006972. PubMed ID: 28832619
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.
    Ha SJ; Kim SR; Choi JH; Park MS; Jin YS
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):77-84. PubMed ID: 21655987
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.
    Zeng WY; Tang YQ; Gou M; Sun ZY; Xia ZY; Kida K
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1753-1767. PubMed ID: 28004152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim SJ; Sim HJ; Kim JW; Lee YG; Park YC; Seo JH
    Bioresour Technol; 2017 Dec; 245(Pt B):1551-1557. PubMed ID: 28651874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correction: Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development.
    Baker RL; Leong WF; Brock MT; Rubin MJ; Markelz RJC; Welch S; Maloof JN; Weinig C
    PLoS Genet; 2020 Oct; 16(10):e1009131. PubMed ID: 33031380
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae.
    Salusjärvi L; Poutanen M; Pitkänen JP; Koivistoinen H; Aristidou A; Kalkkinen N; Ruohonen L; Penttilä M
    Yeast; 2003 Mar; 20(4):295-314. PubMed ID: 12627397
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Correction: Investigations of the mechanisms of interactions between four non-conventional species with Saccharomyces cerevisiae in oenological conditions.
    Harlé O; Legrand J; Tesnière C; Pradal M; Mouret JR; Nidelet T
    PLoS One; 2021; 16(6):e0253680. PubMed ID: 34138978
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Correction: Mendelian and Non-Mendelian Regulation of Gene Expression in Maize.
    Li L; Petsch K; Shimizu R; Liu S; Xu WW; Ying K; Yu J; Scanlon MJ; Schnable PS; Timmermans MCP; Springer NM; Muehlbauer GJ
    PLoS Genet; 2018 Feb; 14(2):e1007234. PubMed ID: 29444085
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correction: Co-Evolution of Mitochondrial tRNA Import and Codon Usage Determines Translational Efficiency in the Green Alga Chlamydomonas.
    Salinas T; Duby F; Larosa V; Coosemans N; Bonnefoy N; Motte P; Maréchal-Drouard L; Remacle C
    PLoS Genet; 2020 Mar; 16(3):e1008719. PubMed ID: 32231362
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correction: The impact of ribosomal interference, codon usage, and exit tunnel interactions on translation elongation rate variation.
    Duc KD; Song YS
    PLoS Genet; 2018 Aug; 14(8):e1007620. PubMed ID: 30142215
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response.
    Jin YS; Laplaza JM; Jeffries TW
    Appl Environ Microbiol; 2004 Nov; 70(11):6816-25. PubMed ID: 15528549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. D-xylose utilization by Saccharomyces cerevisiae.
    van Zyl C; Prior BA; Kilian SG; Kock JL
    J Gen Microbiol; 1989 Nov; 135(11):2791-8. PubMed ID: 2515242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae.
    Tani T; Taguchi H; Akamatsu T
    J Biosci Bioeng; 2017 May; 123(5):613-620. PubMed ID: 28126230
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Ha SJ; Kim SR; Kim H; Du J; Cate JH; Jin YS
    Bioresour Technol; 2013 Dec; 149():525-31. PubMed ID: 24140899
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.
    Wang M; Li S; Zhao H
    Biotechnol Bioeng; 2016 Jan; 113(1):206-15. PubMed ID: 26059511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Correction: Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease.
    Audain E; Wilsdon A; Breckpot J; Izarzugaza JMG; Fitzgerald TW; Kahlert AK; Sifrim A; Wünnemann F; Perez-Riverol Y; Abdul-Khaliq H; Bak M; Bassett AS; Benson DW; Berger F; Daehnert I; Devriendt K; Dittrich S; Daubeney PE; Garg V; Hackmann K; Hoff K; Hofmann P; Dombrowsky G; Pickardt T; Bauer U; Keavney BD; Klaassen S; Kramer HH; Marshall CR; Milewicz DM; Lemaire S; Coselli JS; Mitchell ME; Tomita-Mitchell A; Prakash SK; Stamm K; Stewart AFR; Silversides CK; Siebert R; Stiller B; Rosenfeld JA; Vater I; Postma AV; Caliebe A; Brook JD; Andelfinger G; Hurles ME; Thienpont B; Larsen LA; Hitz MP
    PLoS Genet; 2021 Sep; 17(9):e1009809. PubMed ID: 34547032
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    Kuyper M; Harhangi HR; Stave AK; Winkler AA; Jetten MS; de Laat WT; den Ridder JJ; Op den Camp HJ; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2003 Oct; 4(1):69-78. PubMed ID: 14554198
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.