These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 27828998)

  • 21. Network Analysis of Drug-target Interactions: A Study on FDA-approved New Molecular Entities Between 2000 to 2015.
    Lin HH; Zhang LL; Yan R; Lu JJ; Hu Y
    Sci Rep; 2017 Sep; 7(1):12230. PubMed ID: 28947756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Syk kinase as a therapeutic target in leukemia and lymphoma.
    Efremov DG; Laurenti L
    Expert Opin Investig Drugs; 2011 May; 20(5):623-36. PubMed ID: 21438742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative network mapping of the human kinome interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy.
    Cheng F; Jia P; Wang Q; Zhao Z
    Oncotarget; 2014 Jun; 5(11):3697-710. PubMed ID: 25003367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning.
    Li Z; Qu N; Zhou J; Sun J; Ren Q; Meng J; Wang G; Wang R; Liu J; Chen Y; Zhang S; Zheng M; Li X
    Nucleic Acids Res; 2024 Jul; 52(W1):W489-W497. PubMed ID: 38752486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dynamic nature of the kinome.
    Graves LM; Duncan JS; Whittle MC; Johnson GL
    Biochem J; 2013 Feb; 450(1):1-8. PubMed ID: 23343193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update.
    Roskoski R
    Pharmacol Res; 2022 Jan; 175():106037. PubMed ID: 34921994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polypharmacology in Drug Discovery: A Review from Systems Pharmacology Perspective.
    Zhang W; Bai Y; Wang Y; Xiao W
    Curr Pharm Des; 2016; 22(21):3171-81. PubMed ID: 26907941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive Data-Driven Assessment of Non-Kinase Targets of Inhibitors of the Human Kinome.
    Mobasher M; Vogt M; Xerxa E; Bajorath J
    Biomolecules; 2024 Feb; 14(3):. PubMed ID: 38540679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual or multi-targeting inhibitors: The next generation anticancer agents.
    Raghavendra NM; Pingili D; Kadasi S; Mettu A; Prasad SVUM
    Eur J Med Chem; 2018 Jan; 143():1277-1300. PubMed ID: 29126724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinase Inhibitors FDA Approved 2018-2023: Drug Targets, Metabolic Pathways, and Drug-Induced Toxicities.
    Latham BD; Geffert RM; Jackson KD
    Drug Metab Dispos; 2024 May; 52(6):479-492. PubMed ID: 38286637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs.
    Wu P; Nielsen TE; Clausen MH
    Drug Discov Today; 2016 Jan; 21(1):5-10. PubMed ID: 26210956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An innovative kinome platform to accelerate small-molecule inhibitor discovery and optimization from hits to leads.
    Chaudhry C; Tebben A; Tokarski JS; Borzilleri R; Pitts WJ; Lippy J; Zhang L
    Drug Discov Today; 2021 May; 26(5):1115-1125. PubMed ID: 33497831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative analysis on the characteristics of targets with FDA approved drugs.
    Sakharkar MK; Li P; Zhong Z; Sakharkar KR
    Int J Biol Sci; 2007 Dec; 4(1):15-22. PubMed ID: 18167532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pocketome of human kinases: prioritizing the ATP binding sites of (yet) untapped protein kinases for drug discovery.
    Volkamer A; Eid S; Turk S; Jaeger S; Rippmann F; Fulle S
    J Chem Inf Model; 2015 Mar; 55(3):538-49. PubMed ID: 25557645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome.
    Miljković F; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2019 Jun; 33(6):559-572. PubMed ID: 30915709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing systematic protein-ligand interaction fingerprints for drug discovery.
    Zhao Z; Bourne PE
    Drug Discov Today; 2022 Oct; 27(10):103319. PubMed ID: 35850431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rational Polypharmacology: Systematically Identifying and Engaging Multiple Drug Targets To Promote Axon Growth.
    Al-Ali H; Lee DH; Danzi MC; Nassif H; Gautam P; Wennerberg K; Zuercher B; Drewry DH; Lee JK; Lemmon VP; Bixby JL
    ACS Chem Biol; 2015 Aug; 10(8):1939-51. PubMed ID: 26056718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Network Pharmacology: Exploring the Resources and Methodologies.
    Muhammad J; Khan A; Ali A; Fang L; Yanjing W; Xu Q; Wei DQ
    Curr Top Med Chem; 2018; 18(12):949-964. PubMed ID: 29600765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery.
    Ravikumar B; Aittokallio T
    Expert Opin Drug Discov; 2018 Feb; 13(2):179-192. PubMed ID: 29233023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mining significant substructure pairs for interpreting polypharmacology in drug-target network.
    Takigawa I; Tsuda K; Mamitsuka H
    PLoS One; 2011 Feb; 6(2):e16999. PubMed ID: 21373195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.