BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27829155)

  • 1. p53 Activity Results in DNA Replication Fork Processivity.
    Klusmann I; Rodewald S; Müller L; Friedrich M; Wienken M; Li Y; Schulz-Heddergott R; Dobbelstein M
    Cell Rep; 2016 Nov; 17(7):1845-1857. PubMed ID: 27829155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mdm4 supports DNA replication in a p53-independent fashion.
    Wohlberedt K; Klusmann I; Derevyanko PK; Henningsen K; Choo JAMY; Manzini V; Magerhans A; Giansanti C; Eischen CM; Jochemsen AG; Dobbelstein M
    Oncogene; 2020 Jun; 39(25):4828-4843. PubMed ID: 32427989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells.
    Duan W; Gao L; Wu X; Zhang Y; Otterson GA; Villalona-Calero MA
    Exp Cell Res; 2006 Oct; 312(17):3370-8. PubMed ID: 16934800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of replication fork progression in low-dose-specific p53-dependent S-phase DNA damage checkpoint.
    Shimura T; Toyoshima M; Adiga SK; Kunoh T; Nagai H; Shimizu N; Inoue M; Niwa O
    Oncogene; 2006 Sep; 25(44):5921-32. PubMed ID: 16682953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Murine double minute 2: p53-independent roads lead to genome instability or death.
    Bouska A; Eischen CM
    Trends Biochem Sci; 2009 Jun; 34(6):279-86. PubMed ID: 19447627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P53 inhibits strand exchange and replication fork regression promoted by human Rad51.
    Yoon D; Wang Y; Stapleford K; Wiesmüller L; Chen J
    J Mol Biol; 2004 Feb; 336(3):639-54. PubMed ID: 15095978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mdm2 deletion does not alter growth characteristics of p53-deficient embryo fibroblasts.
    McMasters KM; Montes de Oca Luna R; Peña JR; Lozano G
    Oncogene; 1996 Oct; 13(8):1731-6. PubMed ID: 8895519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The loss of mdm2 induces p53-mediated apoptosis.
    de Rozieres S; Maya R; Oren M; Lozano G
    Oncogene; 2000 Mar; 19(13):1691-7. PubMed ID: 10763826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function.
    Kamijo T; van de Kamp E; Chong MJ; Zindy F; Diehl JA; Sherr CJ; McKinnon PJ
    Cancer Res; 1999 May; 59(10):2464-9. PubMed ID: 10344759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haploinsufficiency of Mdm2 and Mdm4 in tumorigenesis and development.
    Terzian T; Wang Y; Van Pelt CS; Box NF; Travis EL; Lozano G
    Mol Cell Biol; 2007 Aug; 27(15):5479-85. PubMed ID: 17526734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53.
    Honda R; Yasuda H
    EMBO J; 1999 Jan; 18(1):22-7. PubMed ID: 9878046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for the detection of genome instability derived from replication stress in primary mouse embryonic fibroblasts.
    Luebben SW; Shima N; Kawabata T
    Methods Mol Biol; 2014; 1194():341-52. PubMed ID: 25064113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation.
    Okamoto K; Kashima K; Pereg Y; Ishida M; Yamazaki S; Nota A; Teunisse A; Migliorini D; Kitabayashi I; Marine JC; Prives C; Shiloh Y; Jochemsen AG; Taya Y
    Mol Cell Biol; 2005 Nov; 25(21):9608-20. PubMed ID: 16227609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p53 protects from replication-associated DNA double-strand breaks in mammalian cells.
    Kumari A; Schultz N; Helleday T
    Oncogene; 2004 Mar; 23(13):2324-9. PubMed ID: 14743204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirements for p53 and the ATM gene product in the regulation of G1/S and S phase checkpoints.
    Xie G; Habbersett RC; Jia Y; Peterson SR; Lehnert BE; Bradbury EM; D'Anna JA
    Oncogene; 1998 Feb; 16(6):721-36. PubMed ID: 9488036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression.
    Giansanti C; Manzini V; Dickmanns A; Dickmanns A; Palumbieri MD; Sanchi A; Kienle SM; Rieth S; Scheffner M; Lopes M; Dobbelstein M
    Cell Rep; 2022 May; 39(9):110879. PubMed ID: 35649362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression.
    Mussman JG; Horn HF; Carroll PE; Okuda M; Tarapore P; Donehower LA; Fukasawa K
    Oncogene; 2000 Mar; 19(13):1635-46. PubMed ID: 10763820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRIAD1 inhibits MDM2-mediated p53 ubiquitination and degradation.
    Bae S; Jung JH; Kim K; An IS; Kim SY; Lee JH; Park IC; Jin YW; Lee SJ; An S
    FEBS Lett; 2012 Sep; 586(19):3057-63. PubMed ID: 22819825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small molecules that bind the Mdm2 RING stabilize and activate p53.
    Roxburgh P; Hock AK; Dickens MP; Mezna M; Fischer PM; Vousden KH
    Carcinogenesis; 2012 Apr; 33(4):791-8. PubMed ID: 22301280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo.
    Francoz S; Froment P; Bogaerts S; De Clercq S; Maetens M; Doumont G; Bellefroid E; Marine JC
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3232-7. PubMed ID: 16492744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.