BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27829155)

  • 21. Co-chaperon DnaJC7/TPR2 enhances p53 stability and activity through blocking the complex formation between p53 and MDM2.
    Kubo N; Wu D; Yoshihara Y; Sang M; Nakagawara A; Ozaki T
    Biochem Biophys Res Commun; 2013 Jan; 430(3):1034-9. PubMed ID: 23261415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage.
    Maya R; Balass M; Kim ST; Shkedy D; Leal JF; Shifman O; Moas M; Buschmann T; Ronai Z; Shiloh Y; Kastan MB; Katzir E; Oren M
    Genes Dev; 2001 May; 15(9):1067-77. PubMed ID: 11331603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of Epstein-Barr virus BZLF1 immediate-early protein induces p53 degradation independent of MDM2, leading to repression of p53-mediated transcription.
    Sato Y; Shirata N; Kudoh A; Iwahori S; Nakayama S; Murata T; Isomura H; Nishiyama Y; Tsurumi T
    Virology; 2009 May; 388(1):204-11. PubMed ID: 19375142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. p14ARF is a component of the p53 response following ionizing irradiation of normal human fibroblasts.
    Khan S; Guevara C; Fujii G; Parry D
    Oncogene; 2004 Aug; 23(36):6040-6. PubMed ID: 15195142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. mdmx is a negative regulator of p53 activity in vivo.
    Finch RA; Donoviel DB; Potter D; Shi M; Fan A; Freed DD; Wang CY; Zambrowicz BP; Ramirez-Solis R; Sands AT; Zhang N
    Cancer Res; 2002 Jun; 62(11):3221-5. PubMed ID: 12036937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of the Bcl-3 proto-oncogene suppresses p53 activation.
    Kashatus D; Cogswell P; Baldwin AS
    Genes Dev; 2006 Jan; 20(2):225-35. PubMed ID: 16384933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation.
    Houlihan SL; Feng Y
    Elife; 2014 Sep; 3():e03297. PubMed ID: 25245017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BCL11B tumor suppressor inhibits HDM2 expression in a p53-dependent manner.
    Obata M; Kominami R; Mishima Y
    Cell Signal; 2012 May; 24(5):1047-52. PubMed ID: 22245141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. p53 in polyoma virus transformed REF52 cells.
    Mor O; Read M; Fried M
    Oncogene; 1997 Dec; 15(25):3113-9. PubMed ID: 9444959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage.
    Chen L; Gilkes DM; Pan Y; Lane WS; Chen J
    EMBO J; 2005 Oct; 24(19):3411-22. PubMed ID: 16163388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ORF73-null murine gammaherpesvirus 68 reveals roles for mLANA and p53 in virus replication.
    Forrest JC; Paden CR; Allen RD; Collins J; Speck SH
    J Virol; 2007 Nov; 81(21):11957-71. PubMed ID: 17699571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcription factor Nrf2 maintains the basal expression of Mdm2: An implication of the regulation of p53 signaling by Nrf2.
    You A; Nam CW; Wakabayashi N; Yamamoto M; Kensler TW; Kwak MK
    Arch Biochem Biophys; 2011 Mar; 507(2):356-64. PubMed ID: 21211512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa.
    Valente LJ; Gray DH; Michalak EM; Pinon-Hofbauer J; Egle A; Scott CL; Janic A; Strasser A
    Cell Rep; 2013 May; 3(5):1339-45. PubMed ID: 23665218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. E2F1 inhibits MDM2 expression in a p53-dependent manner.
    Tian X; Chen Y; Hu W; Wu M
    Cell Signal; 2011 Jan; 23(1):193-200. PubMed ID: 20837136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop.
    Lu X; Ma O; Nguyen TA; Jones SN; Oren M; Donehower LA
    Cancer Cell; 2007 Oct; 12(4):342-54. PubMed ID: 17936559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. p53 Monitors replication fork regression by binding to "chickenfoot" intermediates.
    Subramanian D; Griffith JD
    J Biol Chem; 2005 Dec; 280(52):42568-72. PubMed ID: 16204246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defective replication stress response inhibits lymphomagenesis and impairs lymphocyte reconstitution.
    Puccetti MV; Fischer MA; Arrate MP; Boyd KL; Duszynski RJ; Bétous R; Cortez D; Eischen CM
    Oncogene; 2017 May; 36(18):2553-2564. PubMed ID: 27797382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Tip of an Iceberg: Replication-Associated Functions of the Tumor Suppressor p53.
    Gottifredi V; Wiesmüller L
    Cancers (Basel); 2018 Jul; 10(8):. PubMed ID: 30060597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of the DNA fiber spreading technique to detect the effects of mutant p53 on DNA replication.
    Frum RA; Deb S; Deb SP
    Methods Mol Biol; 2013; 962():147-55. PubMed ID: 23150444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor suppression: putting p53 in context.
    Mills KD
    Cell Cycle; 2013 Nov; 12(22):3461-2. PubMed ID: 24131920
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.