These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27829192)

  • 41. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.
    Newitt DC; Majumdar S; van Rietbergen B; von Ingersleben G; Harris ST; Genant HK; Chesnut C; Garnero P; MacDonald B
    Osteoporos Int; 2002 Jan; 13(1):6-17. PubMed ID: 11878456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Remodelling of trabecular bone in human distal tibia: A model based on an in-vivo HR-pQCT study.
    Du J; Li S; Silberschmidt VV
    J Mech Behav Biomed Mater; 2021 Jul; 119():104506. PubMed ID: 33865068
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Network models for characterization of trabecular bone.
    Mondal A; Nguyen C; Ma X; Elbanna AE; Carlson JM
    Phys Rev E; 2019 Apr; 99(4-1):042406. PubMed ID: 31108725
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiphysics of bone remodeling: A 2D mesoscale activation simulation.
    Spingarn C; Wagner D; Rémond Y; George D
    Biomed Mater Eng; 2017; 28(s1):S153-S158. PubMed ID: 28372290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bone stress and strain modification in diastema closure: 3D analysis using finite element method.
    Geramy A; Bouserhal J; Martin D; Baghaeian P
    Int Orthod; 2015 Sep; 13(3):274-86. PubMed ID: 26277458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.
    Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    Clin Biomech (Bristol, Avon); 2017 Jan; 41():1-8. PubMed ID: 27842233
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantifying the regional variations in the mechanical properties of cancellous bone of the tibia using indentation testing and quantitative computed tomographic imaging.
    Vijayakumar V; Quenneville CE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):588-93. PubMed ID: 27068841
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Osteoporosis-related variations of trabecular bone properties of proximal human humeral heads at different scale lengths.
    Molino G; Dalpozzi A; Ciapetti G; Lorusso M; Novara C; Cavallo M; Baldini N; Giorgis F; Fiorilli S; Vitale-Brovarone C
    J Mech Behav Biomed Mater; 2019 Dec; 100():103373. PubMed ID: 31369957
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Altered architecture and cell populations affect bone marrow mechanobiology in the osteoporotic human femur.
    Metzger TA; Vaughan TJ; McNamara LM; Niebur GL
    Biomech Model Mechanobiol; 2017 Jun; 16(3):841-850. PubMed ID: 27878399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Experimental validation of a nonlinear μFE model based on cohesive-frictional plasticity for trabecular bone.
    Schwiedrzik J; Gross T; Bina M; Pretterklieber M; Zysset P; Pahr D
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02739. PubMed ID: 26224581
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis.
    Huang L; You YK; Zhu TY; Zheng LZ; Huang XR; Chen HY; Yao D; Lan HY; Qin L
    Sci Rep; 2016 Jun; 6():27745. PubMed ID: 27283954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials.
    Giorgio I; Andreaus U; Scerrato D; dell'Isola F
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1325-43. PubMed ID: 26831284
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Influence of trabecular microstructure modeling on finite element analysis of dental implant].
    Shen MJ; Wang GG; Zhu XH; Ding X
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Sep; 51(9):542-5. PubMed ID: 27596344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On the limits of finite element models created from (micro)CT datasets and used in studies of bone-implant-related biomechanical problems.
    Marcián P; Borák L; Zikmund T; Horáčková L; Kaiser J; Joukal M; Wolff J
    J Mech Behav Biomed Mater; 2021 May; 117():104393. PubMed ID: 33647729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluid-solid coupling numerical simulation of trabecular bone under cyclic loading in different directions.
    Li T; Chen Z; Gao Y; Zhu L; Yang R; Leng H; Huo B
    J Biomech; 2020 Aug; 109():109912. PubMed ID: 32807313
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression.
    Lee CS; Lee JM; Youn B; Kim HS; Shin JK; Goh TS; Lee JS
    J Mech Behav Biomed Mater; 2017 Jan; 65():213-223. PubMed ID: 27592290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomechanical role of peri-implant cancellous bone architecture.
    Matsunaga S; Shirakura Y; Ohashi T; Nakahara K; Tamatsu Y; Takano N; Ide Y
    Int J Prosthodont; 2010; 23(4):333-8. PubMed ID: 20617221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques.
    Ulrich D; van Rietbergen B; Weinans H; Rüegsegger P
    J Biomech; 1998 Dec; 31(12):1187-92. PubMed ID: 9882053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiscale modeling of trabecular bone marrow: understanding the micromechanical environment of mesenchymal stem cells during osteoporosis.
    Vaughan TJ; Voisin M; Niebur GL; McNamara LM
    J Biomech Eng; 2015 Jan; 137(1):. PubMed ID: 25363305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.