BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27829484)

  • 21. Transition period-related changes in the abundance of the mRNAs of adiponectin and its receptors, of visfatin, and of fatty acid binding receptors in adipose tissue of high-yielding dairy cows.
    Lemor A; Hosseini A; Sauerwein H; Mielenz M
    Domest Anim Endocrinol; 2009 Jul; 37(1):37-44. PubMed ID: 19345551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free fatty acid receptors as therapeutic targets for the treatment of diabetes.
    Ichimura A; Hasegawa S; Kasubuchi M; Kimura I
    Front Pharmacol; 2014; 5():236. PubMed ID: 25414667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abundance of adiponectin system and G-protein coupled receptor GPR109A mRNA in adipose tissue and liver of F2 offspring cows of Charolais × German Holstein crosses that differ in body fat accumulation.
    Mielenz M; Kuhla B; Hammon HM
    J Dairy Sci; 2013 Jan; 96(1):278-89. PubMed ID: 23141824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet.
    Bjursell M; Admyre T; Göransson M; Marley AE; Smith DM; Oscarsson J; Bohlooly-Y M
    Am J Physiol Endocrinol Metab; 2011 Jan; 300(1):E211-20. PubMed ID: 20959533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of hepatic adaptation in extreme metabolic phenotypes observed in early lactation dairy cows on-farm.
    van Dorland HA; Graber M; Kohler S; Steiner A; Bruckmaier RM
    J Anim Physiol Anim Nutr (Berl); 2014 Aug; 98(4):693-703. PubMed ID: 24033645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rare and potentially pathogenic variants in hydroxycarboxylic acid receptor genes identified in breast cancer cases.
    McGuire Sams C; Shepp K; Pugh J; Bishop MR; Merner ND
    BMC Med Genomics; 2021 Dec; 14(1):284. PubMed ID: 34852802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer.
    Carretta MD; Quiroga J; López R; Hidalgo MA; Burgos RA
    Front Physiol; 2021; 12():662739. PubMed ID: 33897470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Free Fatty Acid Receptor 2 (FFAR2) in the Regulation of Metabolic Homeostasis.
    Mohammad S
    Curr Drug Targets; 2015; 16(7):771-5. PubMed ID: 25850624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short-chain fatty acids: possible regulators of insulin secretion.
    Rosli NSA; Abd Gani S; Khayat ME; Zaidan UH; Ismail A; Abdul Rahim MBH
    Mol Cell Biochem; 2023 Mar; 478(3):517-530. PubMed ID: 35943655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing.
    Ang Z; Xiong D; Wu M; Ding JL
    FASEB J; 2018 Jan; 32(1):289-303. PubMed ID: 28883043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel antidiabetic therapy: free fatty acid receptors as potential drug target.
    Sekiguchi H; Kasubuchi M; Hasegawa S; Pelisch N; Kimura I; Ichimura A
    Curr Diabetes Rev; 2015; 11(2):107-15. PubMed ID: 25732031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The composition of dietary fat alters the transcriptional profile of pathways associated with lipid metabolism in the liver and adipose tissue in the pig.
    Kellner TA; Gabler NK; Patience JF
    J Anim Sci; 2017 Aug; 95(8):3609-3619. PubMed ID: 28805896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free fatty acids receptors 2 and 3 control cell proliferation by regulating cellular glucose uptake.
    Al Mahri S; Al Ghamdi A; Akiel M; Al Aujan M; Mohammad S; Aziz MA
    World J Gastrointest Oncol; 2020 May; 12(5):514-525. PubMed ID: 32461783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free Fatty Acid Receptors (FFARs): Emerging Therapeutic Targets for the Management of Diabetes Mellitus.
    Loona DPS; Das B; Kaur R; Kumar R; Yadav AK
    Curr Med Chem; 2023; 30(30):3404-3440. PubMed ID: 36173072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue.
    Newman AW; Miller A; Leal Yepes FA; Bitsko E; Nydam D; Mann S
    J Dairy Sci; 2019 Feb; 102(2):1693-1701. PubMed ID: 30471901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism meets immunity: The role of free fatty acid receptors in the immune system.
    Alvarez-Curto E; Milligan G
    Biochem Pharmacol; 2016 Aug; 114():3-13. PubMed ID: 27002183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens.
    Kawabata Y; Kawabata F; Nishimura S; Tabata S
    Biochem Biophys Res Commun; 2018 Jan; 495(1):131-135. PubMed ID: 29080746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The nicotinic acid receptor--a new mechanism for an old drug.
    Karpe F; Frayn KN
    Lancet; 2004 Jun; 363(9424):1892-4. PubMed ID: 15183629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased muscle fatty acid oxidation in dairy cows with intensive body fat mobilization during early lactation.
    Schäff C; Börner S; Hacke S; Kautzsch U; Sauerwein H; Spachmann SK; Schweigel-Röntgen M; Hammon HM; Kuhla B
    J Dairy Sci; 2013 Oct; 96(10):6449-60. PubMed ID: 23910553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The adipose tissue in farm animals: a proteomic approach.
    Sauerwein H; Bendixen E; Restelli L; Ceciliani F
    Curr Protein Pept Sci; 2014 Mar; 15(2):146-55. PubMed ID: 24555890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.