These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27829627)

  • 21. Significance of synthetic nanostructures in dictating cellular response.
    Yim EK; Leong KW
    Nanomedicine; 2005 Mar; 1(1):10-21. PubMed ID: 17292053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subcellular and Dynamic Coordination between Src Activity and Cell Protrusion in Microenvironment.
    Zhuo Y; Qian T; Wu Y; Seong J; Gong Y; Ma H; Wang Y; Lu S
    Sci Rep; 2015 Aug; 5():12963. PubMed ID: 26261043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale biomimetic topography for the alignment of neonatal and embryonic stem cell-derived heart cells.
    Luna JI; Ciriza J; Garcia-Ojeda ME; Kong M; Herren A; Lieu DK; Li RA; Fowlkes CC; Khine M; McCloskey KE
    Tissue Eng Part C Methods; 2011 May; 17(5):579-88. PubMed ID: 21235325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What makes cells move: requirements and obstacles for spontaneous cell motility.
    Binamé F; Pawlak G; Roux P; Hibner U
    Mol Biosyst; 2010 Apr; 6(4):648-61. PubMed ID: 20237642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates.
    Wang PY; Yu J; Lin JH; Tsai WB
    Acta Biomater; 2011 Sep; 7(9):3285-93. PubMed ID: 21664306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of polarized protrusion formation on neuronal precursors migrating in the developing chicken cerebellum.
    Sakakibara A; Horwitz AF
    J Cell Sci; 2006 Sep; 119(Pt 17):3583-92. PubMed ID: 16912080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures.
    Faid K; Voicu R; Bani-Yaghoub M; Tremblay R; Mealing G; Py C; Barjovanu R
    Biomed Microdevices; 2005 Sep; 7(3):179-84. PubMed ID: 16133804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range.
    Biela SA; Su Y; Spatz JP; Kemkemer R
    Acta Biomater; 2009 Sep; 5(7):2460-6. PubMed ID: 19410529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concise Review: Stem Cell Microenvironment on a Chip: Current Technologies for Tissue Engineering and Stem Cell Biology.
    Park D; Lim J; Park JY; Lee SH
    Stem Cells Transl Med; 2015 Nov; 4(11):1352-68. PubMed ID: 26450425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localized bimodal response of neurite extensions and structural proteins in dorsal-root ganglion neurons with controlled polydimethylsiloxane substrate stiffness.
    Cheng CM; LeDuc PR; Lin YW
    J Biomech; 2011 Mar; 44(5):856-62. PubMed ID: 21208617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micro-composite substrates for the study of cell-matrix mechanical interactions.
    Chao PH; Sheng SC; Chang WR
    J Mech Behav Biomed Mater; 2014 Oct; 38():232-41. PubMed ID: 24556044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microsystems for biomechanical measurements.
    Norman JJ; Mukundan V; Bernstein D; Pruitt BL
    Pediatr Res; 2008 May; 63(5):576-83. PubMed ID: 18427304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 'Run-and-tumble' or 'look-and-run'? A mechanical model to explore the behavior of a migrating amoeboid cell.
    Allena R; Aubry D
    J Theor Biol; 2012 Aug; 306():15-31. PubMed ID: 22726805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two distinct actin networks drive the protrusion of migrating cells.
    Ponti A; Machacek M; Gupton SL; Waterman-Storer CM; Danuser G
    Science; 2004 Sep; 305(5691):1782-6. PubMed ID: 15375270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro biocompatibility of sheath-core cellulose-acetate-based electrospun scaffolds towards endothelial cells and platelets.
    Rubenstein DA; Venkitachalam SM; Zamfir D; Wang F; Lu H; Frame MD; Yin W
    J Biomater Sci Polym Ed; 2010; 21(13):1713-36. PubMed ID: 20537251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging concepts on the mechanical interplay between migrating cells and microenvironment
    Ventura G; Sedzinski J
    Front Cell Dev Biol; 2022; 10():961460. PubMed ID: 36238689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration.
    Gupton SL; Waterman-Storer CM
    Cell; 2006 Jun; 125(7):1361-74. PubMed ID: 16814721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating novel technologies to fabricate smart scaffolds.
    Moroni L; de Wijn JR; van Blitterswijk CA
    J Biomater Sci Polym Ed; 2008; 19(5):543-72. PubMed ID: 18419938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.