These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27830213)

  • 1. Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall.
    Vitoshkin H; Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Phys Rev Fluids; 2016; 1():. PubMed ID: 27830213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions.
    Ramakrishnan N; Wang Y; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    J Fluid Mech; 2017 Jun; 821():117-152. PubMed ID: 29109590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion of a spherical particle in a cylindrical channel using arbitrary Lagrangian-Eulerian method.
    Al Quddus N; Moussa WA; Bhattacharjee S
    J Colloid Interface Sci; 2008 Jan; 317(2):620-30. PubMed ID: 17949729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium.
    Uma B; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Mol Phys; 2012; 110(11-12):1057-1067. PubMed ID: 22865935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid approach for the simulation of a nearly neutrally buoyant nanoparticle thermal motion in an incompressible Newtonian fluid medium.
    Uma B; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    J Heat Transfer; 2013 Jan; 135(1):0110111-9. PubMed ID: 23814315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Proc ASME Micro Nanoscale Heat Mass Transf Int Conf (2012); 2012 Mar; 2012():735-743. PubMed ID: 25621317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Int J Micronano Scale Transp; 2012 Jun; 3(1-2):13-20. PubMed ID: 23950764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion of a Rigid Cylinder Between Parallel Plates in Stokes Flow: Part 1: Motion in A Quiescent Fluid and Sedimentation.
    Dvinsky AS; Popel AS
    Comput Fluids; 1987; 15(4):391-404. PubMed ID: 28943671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the gap between molecular dynamics and hydrodynamics in nanoscale Brownian motions.
    Mizuta K; Ishii Y; Kim K; Matubayasi N
    Soft Matter; 2019 May; 15(21):4380-4390. PubMed ID: 31086871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes.
    Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052303. PubMed ID: 26066173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion of a Colloidal Particle Coated with a Layer of Adsorbed Polymers in a Spherical Cavity.
    Keh HJ; Kuo J
    J Colloid Interface Sci; 1997 Jan; 185(2):411-23. PubMed ID: 9028896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic description of the long-time tails of the linear and rotational velocity autocorrelation functions of a particle in a confined geometry.
    Frydel D; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061404. PubMed ID: 18233847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields.
    Uma B; Swaminathan TN; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    Phys Fluids (1994); 2011 Jul; 23(7):73602-7360215. PubMed ID: 21918592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent correlation of constrained colloidal motion.
    Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031402. PubMed ID: 19391939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic radius approximation for spherical particles suspended in a viscous fluid: influence of particle internal structure and boundary.
    Cichocki B; Ekiel-Jeżewska ML; Wajnryb E
    J Chem Phys; 2014 Apr; 140(16):164902. PubMed ID: 24784305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion in a viscous compressible fluid.
    Felderhof BU
    J Chem Phys; 2005 Nov; 123(18):184903. PubMed ID: 16292935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundary Effects on Electrophoretic Motion of Spherical Particles for Thick Double Layers and Low Zeta Potential.
    Ennis J; Anderson JL
    J Colloid Interface Sci; 1997 Jan; 185(2):497-514. PubMed ID: 9028905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium.
    Grebenkov DS; Vahabi M; Bertseva E; Forró L; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):040701. PubMed ID: 24229100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary effects on electrophoresis of a colloidal cylinder with a nonuniform zeta potential distribution.
    Hsieh TH; Keh HJ
    J Colloid Interface Sci; 2007 Nov; 315(1):343-54. PubMed ID: 17669415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.