BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27830295)

  • 1. Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor.
    Gao P; Wu S; Praveen P; Loh KC; Li Z
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1857-1868. PubMed ID: 27830295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas.
    Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1125-33. PubMed ID: 22526330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-free protein synthesis enables one-pot cascade biotransformation in an aqueous-organic biphasic system.
    Liu WQ; Wu C; Jewett MC; Li J
    Biotechnol Bioeng; 2020 Dec; 117(12):4001-4008. PubMed ID: 32827317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous production of enantiopure 1,2-epoxyhexane by yeast epoxide hydrolase in a two-phase membrane bioreactor.
    Choi WJ; Choi CY; De Bont JA; Weijers CA
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):641-6. PubMed ID: 11131388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation.
    Park JB; Bühler B; Habicher T; Hauer B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2006 Oct; 95(3):501-12. PubMed ID: 16767777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic influence of cells on the formation of stable emulsions in organic-aqueous biotransformations.
    Collins J; Grund M; Brandenbusch C; Sadowski G; Schmid A; Bühler B
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1011-26. PubMed ID: 25916765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational selection of biphasic reaction systems for geranyl glucoside production by Escherichia coli whole-cell biocatalysts.
    Priebe X; Daschner M; Schwab W; Weuster-Botz D
    Enzyme Microb Technol; 2018 May; 112():79-87. PubMed ID: 29499785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440.
    Tan C; Zhang X; Zhu Z; Xu M; Yang T; Osire T; Yang S; Rao Z
    Microb Cell Fact; 2019 Jan; 18(1):12. PubMed ID: 30678678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase.
    Panke S; Held M; Wubbolts MG; Witholt B; Schmid A
    Biotechnol Bioeng; 2002 Oct; 80(1):33-41. PubMed ID: 12209784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems.
    Chen WJ; Lou WY; Zong MH
    Bioresour Technol; 2012 Jul; 115():58-62. PubMed ID: 22100235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioconvergent hydrolysis of m-nitrostyrene oxide at an elevated concentration by Phaseolus vulgaris epoxide hydrolase in the organic/aqueous two-phase system.
    Wen Z; Zhao J; Liu YY; Zhou JJ; Liu C; Li C; Wu MC
    Lett Appl Microbiol; 2020 Mar; 70(3):181-188. PubMed ID: 31784998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition.
    Julsing MK; Kuhn D; Schmid A; Bühler B
    Biotechnol Bioeng; 2012 May; 109(5):1109-19. PubMed ID: 22170310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent.
    Lee K; Bang HB; Lee YH; Jeong KJ
    Microb Cell Fact; 2019 May; 18(1):79. PubMed ID: 31053078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations at the putative active cavity of styrene monooxygenase: enhanced activity and reversed enantioselectivity.
    Lin H; Tang DF; Ahmed AA; Liu Y; Wu ZL
    J Biotechnol; 2012 Oct; 161(3):235-41. PubMed ID: 22796094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic resolution of racemic styrene oxide at a high concentration by recombinant Aspergillus usamii epoxide hydrolase in an n-hexanol/buffer biphasic system.
    Hu D; Wang R; Shi XL; Ye HH; Wu Q; Wu MC; Chu JJ
    J Biotechnol; 2016 Oct; 236():152-8. PubMed ID: 27546798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making variability less variable: matching expression system and host for oxygenase-based biotransformations.
    Lindmeyer M; Meyer D; Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):851-66. PubMed ID: 25877162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved reactor performance and operability in the biotransformation of carveol to carvone using a solid-liquid two-phase partitioning bioreactor.
    Morrish JL; Daugulis AJ
    Biotechnol Bioeng; 2008 Dec; 101(5):946-56. PubMed ID: 18546419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benzoic acid production via cascade biotransformation and coupled fermentation-biotransformation.
    Zhou Y; Sekar BS; Wu S; Li Z
    Biotechnol Bioeng; 2020 Aug; 117(8):2340-2350. PubMed ID: 32343364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of 1,2-epoxyhexane by Rhodotorula glutinis using a two-phase membrane bioreactor.
    Choi WJ; Choi CY; De Bont JA; Weijers CA
    Appl Microbiol Biotechnol; 1999 Dec; 53(1):7-11. PubMed ID: 10645621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioconvergent hydrolysis of racemic styrene oxide at high concentration by a pair of novel epoxide hydrolases into (R)-phenyl-1,2-ethanediol.
    Wang R; Hu D; Zong X; Li J; Ding L; Wu M; Li J
    Biotechnol Lett; 2017 Dec; 39(12):1917-1923. PubMed ID: 28875350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.