BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 27830453)

  • 1. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres.
    Yang W; Yu H; Li G; Wang Y; Liu L
    Biomed Microdevices; 2016 Dec; 18(6):107. PubMed ID: 27830453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics.
    Gaharwar AK; Rivera C; Wu CJ; Chan BK; Schmidt G
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1800-7. PubMed ID: 23827639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth.
    Akdemir ZS; Akçakaya H; Kahraman MV; Ceyhan T; Kayaman-Apohan N; Güngör A
    Macromol Biosci; 2008 Sep; 8(9):852-62. PubMed ID: 18504803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and characterization of a photo-cross-linked functionalized type-I collagen (Oreochromis niloticus) and polyethylene glycol diacrylate hydrogel.
    Bao Z; Gao M; Fan X; Cui Y; Yang J; Peng X; Xian M; Sun Y; Nian R
    Int J Biol Macromol; 2020 Jul; 155():163-173. PubMed ID: 32229213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture.
    Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu-MSNs and ZnO nanoparticles incorporated poly(ethylene glycol) diacrylate/sodium alginate double network hydrogel for simultaneous enhancement of osteogenic differentiation.
    Hia EM; Jang SR; Maharjan B; Park J; Park CH
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113804. PubMed ID: 38428209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering.
    Beamish JA; Zhu J; Kottke-Marchant K; Marchant RE
    J Biomed Mater Res A; 2010 Feb; 92(2):441-50. PubMed ID: 19191313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels.
    Jin T; Stanciulescu I
    Acta Biomater; 2017 Feb; 49():247-259. PubMed ID: 27856282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering biologically extensible hydrogels using photolithographic printing.
    Mehta SM; Jin T; Stanciulescu I; Grande-Allen KJ
    Acta Biomater; 2018 Jul; 75():52-62. PubMed ID: 29803005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of bioactive photocrosslinkable fibrous hydrogels.
    Stephens-Altus JS; Sundelacruz P; Rowland ML; West JL
    J Biomed Mater Res A; 2011 Aug; 98(2):167-76. PubMed ID: 21548066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold.
    Tan F; Xu X; Deng T; Yin M; Zhang X; Wang J
    Biomed Mater; 2012 Oct; 7(5):055009. PubMed ID: 22945346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface.
    He L; Lin D; Wang Y; Xiao Y; Che J
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):273-9. PubMed ID: 21676598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan/polyethylene glycol diacrylate films as potential wound dressing material.
    Zhang X; Yang D; Nie J
    Int J Biol Macromol; 2008 Dec; 43(5):456-62. PubMed ID: 18809431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels.
    Ouasti S; Donno R; Cellesi F; Sherratt MJ; Terenghi G; Tirelli N
    Biomaterials; 2011 Sep; 32(27):6456-70. PubMed ID: 21680016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration.
    Lee HJ; Sen A; Bae S; Lee JS; Webb K
    Acta Biomater; 2015 Mar; 14():43-52. PubMed ID: 25523876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of tough poly(ethylene glycol)/collagen double network hydrogels for tissue engineering.
    Chen JX; Yuan J; Wu YL; Wang P; Zhao P; Lv GZ; Chen JH
    J Biomed Mater Res A; 2018 Jan; 106(1):192-200. PubMed ID: 28884502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains.
    Cha C; Jeong JH; Shim J; Kong H
    Acta Biomater; 2011 Oct; 7(10):3719-28. PubMed ID: 21704737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels.
    Jiang T; Zhao J; Yu S; Mao Z; Gao C; Zhu Y; Mao C; Zheng L
    Biomaterials; 2019 Jan; 188():130-143. PubMed ID: 30343256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.