These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27830577)

  • 21. Experience-dependent plasticity in hypocretin/orexin neurones: re-setting arousal threshold.
    Gao XB; Wang AH
    Acta Physiol (Oxf); 2010 Mar; 198(3):251-62. PubMed ID: 19785627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action.
    España RA; Baldo BA; Kelley AE; Berridge CW
    Neuroscience; 2001; 106(4):699-715. PubMed ID: 11682157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness.
    Ohno K; Sakurai T
    Front Neuroendocrinol; 2008 Jan; 29(1):70-87. PubMed ID: 17910982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sleep-wake cycle, the hypocretin/orexin system and narcolepsy: advances from preclinical research to treatment.
    Arias-Carrión O; Bradbury M
    CNS Neurol Disord Drug Targets; 2009 Aug; 8(4):232-4. PubMed ID: 19689304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin.
    Postnova S; Voigt K; Braun HA
    J Biol Rhythms; 2009 Dec; 24(6):523-35. PubMed ID: 19926811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sleep neurobiology for the clinician.
    España RA; Scammell TE
    Sleep; 2004 Jun; 27(4):811-20. PubMed ID: 15283019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect.
    Liu ZW; Gao XB
    J Neurophysiol; 2007 Jan; 97(1):837-48. PubMed ID: 17093123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypothalamic regulation of the sleep/wake cycle.
    Ono D; Yamanaka A
    Neurosci Res; 2017 May; 118():74-81. PubMed ID: 28526553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions of the orexin/hypocretin neurones and the histaminergic system.
    Sundvik M; Panula P
    Acta Physiol (Oxf); 2015 Feb; 213(2):321-33. PubMed ID: 25484194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Dual Hypocretin Receptor Antagonist Almorexant is Permissive for Activation of Wake-Promoting Systems.
    Parks GS; Warrier DR; Dittrich L; Schwartz MD; Palmerston JB; Neylan TC; Morairty SR; Kilduff TS
    Neuropsychopharmacology; 2016 Mar; 41(4):1144-55. PubMed ID: 26289145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits.
    Apergis-Schoute J; Iordanidou P; Faure C; Jego S; Schöne C; Aitta-Aho T; Adamantidis A; Burdakov D
    J Neurosci; 2015 Apr; 35(14):5435-41. PubMed ID: 25855162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Promotion of Wakefulness and Energy Expenditure by Orexin-A in the Ventrolateral Preoptic Area.
    Mavanji V; Perez-Leighton CE; Kotz CM; Billington CJ; Parthasarathy S; Sinton CM; Teske JA
    Sleep; 2015 Sep; 38(9):1361-70. PubMed ID: 25845696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy.
    Williams RH; Tsunematsu T; Thomas AM; Bogyo K; Yamanaka A; Kilduff TS
    J Neurosci; 2019 Nov; 39(47):9435-9452. PubMed ID: 31628177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Underlying brain mechanisms that regulate sleep-wakefulness cycles.
    Gvilia I
    Int Rev Neurobiol; 2010; 93():1-21. PubMed ID: 20969999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons.
    Schöne C; Apergis-Schoute J; Sakurai T; Adamantidis A; Burdakov D
    Cell Rep; 2014 May; 7(3):697-704. PubMed ID: 24767990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of the basal forebrain by the orexin/hypocretin neurones.
    Arrigoni E; Mochizuki T; Scammell TE
    Acta Physiol (Oxf); 2010 Mar; 198(3):223-35. PubMed ID: 19723027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Serotonergic neurons in the dorsal raphe nucleus mediate the arousal-promoting effect of orexin during isoflurane anesthesia in male rats.
    Yang C; Zhang L; Hao H; Ran M; Li J; Dong H
    Neuropeptides; 2019 Jun; 75():25-33. PubMed ID: 30935682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Group III metabotropic glutamate receptors maintain tonic inhibition of excitatory synaptic input to hypocretin/orexin neurons.
    Acuna-Goycolea C; Li Y; Van Den Pol AN
    J Neurosci; 2004 Mar; 24(12):3013-22. PubMed ID: 15044540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep.
    Schwartz MD; Nguyen AT; Warrier DR; Palmerston JB; Thomas AM; Morairty SR; Neylan TC; Kilduff TS
    eNeuro; 2016; 3(2):. PubMed ID: 27022631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons.
    Rao Y; Liu ZW; Borok E; Rabenstein RL; Shanabrough M; Lu M; Picciotto MR; Horvath TL; Gao XB
    J Clin Invest; 2007 Dec; 117(12):4022-33. PubMed ID: 18060037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.