These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 27830577)
41. Descending projections from the basal forebrain to the orexin neurons in mice. Agostinelli LJ; Ferrari LL; Mahoney CE; Mochizuki T; Lowell BB; Arrigoni E; Scammell TE J Comp Neurol; 2017 May; 525(7):1668-1684. PubMed ID: 27997037 [TBL] [Abstract][Full Text] [Related]
42. Circadian and dark-pulse activation of orexin/hypocretin neurons. Marston OJ; Williams RH; Canal MM; Samuels RE; Upton N; Piggins HD Mol Brain; 2008 Dec; 1():19. PubMed ID: 19055781 [TBL] [Abstract][Full Text] [Related]
43. The regulation of sleep and wakefulness by the hypothalamic neuropeptide orexin/hypocretin. Inutsuka A; Yamanaka A Nagoya J Med Sci; 2013 Feb; 75(1-2):29-36. PubMed ID: 23544265 [TBL] [Abstract][Full Text] [Related]
44. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. Tsunematsu T; Kilduff TS; Boyden ES; Takahashi S; Tominaga M; Yamanaka A J Neurosci; 2011 Jul; 31(29):10529-39. PubMed ID: 21775598 [TBL] [Abstract][Full Text] [Related]
45. Hypocretin/Orexin Receptor Pharmacology and Sleep Phases. Sun Y; Tisdale RK; Kilduff TS Front Neurol Neurosci; 2021; 45():22-37. PubMed ID: 34052813 [TBL] [Abstract][Full Text] [Related]
46. Mild Traumatic Brain Injury Affects Orexin/Hypocretin Physiology Differently in Male and Female Mice. Somach RT; Jean ID; Farrugia AM; Cohen AS J Neurotrauma; 2023 Oct; 40(19-20):2146-2163. PubMed ID: 37476962 [TBL] [Abstract][Full Text] [Related]
47. A unifying computational framework for stability and flexibility of arousal. Kosse C; Burdakov D Front Syst Neurosci; 2014; 8():192. PubMed ID: 25368557 [TBL] [Abstract][Full Text] [Related]
50. Anatomical and electrophysiological development of the hypothalamic orexin neurons from embryos to neonates. Ogawa Y; Kanda T; Vogt K; Yanagisawa M J Comp Neurol; 2017 Dec; 525(18):3809-3820. PubMed ID: 28608460 [TBL] [Abstract][Full Text] [Related]
51. Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Matsuki T; Nomiyama M; Takahira H; Hirashima N; Kunita S; Takahashi S; Yagami K; Kilduff TS; Bettler B; Yanagisawa M; Sakurai T Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4459-64. PubMed ID: 19246384 [TBL] [Abstract][Full Text] [Related]
52. Hypocretins and Arousal. Li SB; Giardino WJ; de Lecea L Curr Top Behav Neurosci; 2017; 33():93-104. PubMed ID: 28012091 [TBL] [Abstract][Full Text] [Related]
53. The role of the orexin system in stress response. Sargin D Neuropharmacology; 2019 Aug; 154():68-78. PubMed ID: 30266600 [TBL] [Abstract][Full Text] [Related]
55. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Saito YC; Tsujino N; Hasegawa E; Akashi K; Abe M; Mieda M; Sakimura K; Sakurai T Front Neural Circuits; 2013; 7():192. PubMed ID: 24348342 [TBL] [Abstract][Full Text] [Related]
56. Multiple excitatory actions of orexins upon thalamo-cortical neurons in dorsal lateral geniculate nucleus - implications for vision modulation by arousal. Chrobok L; Palus-Chramiec K; Chrzanowska A; Kepczynski M; Lewandowski MH Sci Rep; 2017 Aug; 7(1):7713. PubMed ID: 28794459 [TBL] [Abstract][Full Text] [Related]
59. The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling. Haj-Dahmane S; Shen RY J Neurosci; 2005 Jan; 25(4):896-905. PubMed ID: 15673670 [TBL] [Abstract][Full Text] [Related]
60. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Takahashi K; Lin JS; Sakai K Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]