These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27830653)

  • 1. Control of transcriptional pausing by biased thermal fluctuations on repetitive genomic sequences.
    Imashimizu M; Afek A; Takahashi H; Lubkowska L; Lukatsky DB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7409-E7417. PubMed ID: 27830653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription pausing: biological significance of thermal fluctuations biased by repetitive genomic sequences.
    Imashimizu M; Lukatsky DB
    Transcription; 2018; 9(3):196-203. PubMed ID: 29105534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Transcription Initiation by Biased Thermal Fluctuations on Repetitive Genomic Sequences.
    Imashimizu M; Tokunaga Y; Afek A; Takahashi H; Shimamoto N; Lukatsky DB
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32916947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA Polymerase Pausing during Initial Transcription.
    Duchi D; Bauer DL; Fernandez L; Evans G; Robb N; Hwang LC; Gryte K; Tomescu A; Zawadzki P; Morichaud Z; Brodolin K; Kapanidis AN
    Mol Cell; 2016 Sep; 63(6):939-50. PubMed ID: 27618490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing.
    Kang JY; Mishanina TV; Bellecourt MJ; Mooney RA; Darst SA; Landick R
    Mol Cell; 2018 Mar; 69(5):802-815.e5. PubMed ID: 29499135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo.
    Imashimizu M; Takahashi H; Oshima T; McIntosh C; Bubunenko M; Court DL; Kashlev M
    Genome Biol; 2015 May; 16(1):98. PubMed ID: 25976475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
    Zhilina E; Esyunina D; Brodolin K; Kulbachinskiy A
    Nucleic Acids Res; 2012 Apr; 40(7):3078-91. PubMed ID: 22140106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applied force provides insight into transcriptional pausing and its modulation by transcription factor NusA.
    Zhou J; Ha KS; La Porta A; Landick R; Block SM
    Mol Cell; 2011 Nov; 44(4):635-46. PubMed ID: 22099310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XACT-Seq Comprehensively Defines the Promoter-Position and Promoter-Sequence Determinants for Initial-Transcription Pausing.
    Winkelman JT; Pukhrambam C; Vvedenskaya IO; Zhang Y; Taylor DM; Shah P; Ebright RH; Nickels BE
    Mol Cell; 2020 Sep; 79(5):797-811.e8. PubMed ID: 32750314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA sequences in gal operon override transcription elongation blocks.
    Lewis DE; Komissarova N; Le P; Kashlev M; Adhya S
    J Mol Biol; 2008 Oct; 382(4):843-58. PubMed ID: 18691599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking.
    Neuman KC; Abbondanzieri EA; Landick R; Gelles J; Block SM
    Cell; 2003 Nov; 115(4):437-47. PubMed ID: 14622598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nascent RNA sequencing identifies a widespread sigma70-dependent pausing regulated by Gre factors in bacteria.
    Sun Z; Yakhnin AV; FitzGerald PC; Mclntosh CE; Kashlev M
    Nat Commun; 2021 Feb; 12(1):906. PubMed ID: 33568644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis.
    Delbeau M; Omollo EO; Froom R; Koh S; Mooney RA; Lilic M; Brewer JJ; Rock J; Darst SA; Campbell EA; Landick R
    Mol Cell; 2023 May; 83(9):1474-1488.e8. PubMed ID: 37116494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the trigger loop in translesion RNA synthesis by bacterial RNA polymerase.
    Agapov A; Ignatov A; Turtola M; Belogurov G; Esyunina D; Kulbachinskiy A
    J Biol Chem; 2020 Jul; 295(28):9583-9595. PubMed ID: 32439804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA polymerase SI3 domain modulates global transcriptional pausing and pause-site fluctuations.
    Bao Y; Cao X; Landick R
    Nucleic Acids Res; 2024 May; 52(8):4556-4574. PubMed ID: 38554114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase.
    Herbert KM; Zhou J; Mooney RA; Porta AL; Landick R; Block SM
    J Mol Biol; 2010 May; 399(1):17-30. PubMed ID: 20381500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric control of the RNA polymerase by the elongation factor RfaH.
    Svetlov V; Belogurov GA; Shabrova E; Vassylyev DG; Artsimovitch I
    Nucleic Acids Res; 2007; 35(17):5694-705. PubMed ID: 17711918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the role of RNA structures in transcriptional pausing using in vitro assays and in silico analyses.
    Jeanneau S; Jacques PÉ; Lafontaine DA
    RNA Biol; 2022 Jan; 19(1):916-927. PubMed ID: 35833713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription factor regulation of RNA polymerase's torque generation capacity.
    Ma J; Tan C; Gao X; Fulbright RM; Roberts JW; Wang MD
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2583-2588. PubMed ID: 30635423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Obligate movements of an active site-linked surface domain control RNA polymerase elongation and pausing via a Phe pocket anchor.
    Bao Y; Landick R
    Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34470825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.