These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 27830852)

  • 21. Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation.
    Kuo CW; Shiu JY; Wei KH; Chen P
    J Chromatogr A; 2007 Aug; 1162(2):175-9. PubMed ID: 17628581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous-flow pI-based sorting of proteins and peptides in a microfluidic chip using diffusion potential.
    Song YA; Hsu S; Stevens AL; Han J
    Anal Chem; 2006 Jun; 78(11):3528-36. PubMed ID: 16737204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems.
    Tomeh MA; Zhao X
    Mol Pharm; 2020 Dec; 17(12):4421-4434. PubMed ID: 33213144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems.
    Zhang C; Khoshmanesh K; Mitchell A; Kalantar-Zadeh K
    Anal Bioanal Chem; 2010 Jan; 396(1):401-20. PubMed ID: 19578834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancements in microfluidic technologies for isolation and early detection of circulating cancer-related biomarkers.
    Rana A; Zhang Y; Esfandiari L
    Analyst; 2018 Jun; 143(13):2971-2991. PubMed ID: 29790491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic-based nanoparticle synthesis and their potential applications.
    Khizar S; Zine N; Errachid A; Jaffrezic-Renault N; Elaissari A
    Electrophoresis; 2022 Apr; 43(7-8):819-838. PubMed ID: 34758117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification.
    Huh D; Bahng JH; Ling Y; Wei HH; Kripfgans OD; Fowlkes JB; Grotberg JB; Takayama S
    Anal Chem; 2007 Feb; 79(4):1369-76. PubMed ID: 17297936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advancement and obstacles in microfluidics-based isolation of extracellular vesicles.
    Havers M; Broman A; Lenshof A; Laurell T
    Anal Bioanal Chem; 2023 Mar; 415(7):1265-1285. PubMed ID: 36284018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: A critical review.
    Sonker M; Sahore V; Woolley AT
    Anal Chim Acta; 2017 Sep; 986():1-11. PubMed ID: 28870312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidics: a transformational tool for nanomedicine development and production.
    Garg S; Heuck G; Ip S; Ramsay E
    J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell manipulation in microfluidics.
    Yun H; Kim K; Lee WG
    Biofabrication; 2013 Jun; 5(2):022001. PubMed ID: 23403762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device.
    Zeng L; Chen X; Du J; Yu Z; Zhang R; Zhang Y; Yang H
    Nanoscale; 2021 Feb; 13(7):4029-4037. PubMed ID: 33533377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lab-on-a-chip technologies for genodermatoses: Recent progress and future perspectives.
    Hongzhou C; Shuping G; Wenju W; Li L; Lulu W; Linjun D; Jingmin L; Xiaoli R; Li B
    J Dermatol Sci; 2017 Feb; 85(2):71-76. PubMed ID: 27756517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis.
    Mirasoli M; Guardigli M; Michelini E; Roda A
    J Pharm Biomed Anal; 2014 Jan; 87():36-52. PubMed ID: 24268500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures.
    Uhlmann P; Varnik F; Truman P; Zikos G; Moulin JF; Müller-Buschbaum P; Stamm M
    J Phys Condens Matter; 2011 May; 23(18):184123. PubMed ID: 21508469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H
    Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies.
    Yang F; Liao X; Tian Y; Li G
    Biotechnol J; 2017 Apr; 12(4):. PubMed ID: 28166394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication.
    Herranz-Blanco B; Ginestar E; Zhang H; Hirvonen J; Santos HA
    Int J Pharm; 2017 Jan; 516(1-2):100-105. PubMed ID: 27840159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidics: applications for analytical purposes in chemistry and biochemistry.
    Ohno K; Tachikawa K; Manz A
    Electrophoresis; 2008 Nov; 29(22):4443-53. PubMed ID: 19035399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.