These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 27831491)
1. Structure and function of an ancestral-type β-decarboxylating dehydrogenase from Thermococcus kodakarensis. Shimizu T; Yin L; Yoshida A; Yokooji Y; Hachisuka SI; Sato T; Tomita T; Nishida H; Atomi H; Kuzuyama T; Nishiyama M Biochem J; 2017 Jan; 474(1):105-122. PubMed ID: 27831491 [TBL] [Abstract][Full Text] [Related]
2. Characterization of homoisocitrate dehydrogenase involved in lysine biosynthesis of an extremely thermophilic bacterium, Thermus thermophilus HB27, and evolutionary implication of beta-decarboxylating dehydrogenase. Miyazaki J; Kobashi N; Nishiyama M; Yamane H J Biol Chem; 2003 Jan; 278(3):1864-71. PubMed ID: 12427751 [TBL] [Abstract][Full Text] [Related]
3. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius. Takahashi K; Nakanishi F; Tomita T; Akiyama N; Lassak K; Albers SV; Kuzuyama T; Nishiyama M Extremophiles; 2016 Nov; 20(6):843-853. PubMed ID: 27590116 [TBL] [Abstract][Full Text] [Related]
4. Determinants of dual substrate specificity revealed by the crystal structure of homoisocitrate dehydrogenase from Thermus thermophilus in complex with homoisocitrate·Mg(2+)·NADH. Takahashi K; Tomita T; Kuzuyama T; Nishiyama M Biochem Biophys Res Commun; 2016 Sep; 478(4):1688-93. PubMed ID: 27601325 [TBL] [Abstract][Full Text] [Related]
5. Bifunctional isocitrate-homoisocitrate dehydrogenase: a missing link in the evolution of beta-decarboxylating dehydrogenase. Miyazaki K Biochem Biophys Res Commun; 2005 May; 331(1):341-6. PubMed ID: 15845397 [TBL] [Abstract][Full Text] [Related]
6. Identification of a novel trifunctional homoisocitrate dehydrogenase and modulation of the broad substrate specificity through site-directed mutagenesis. Miyazaki K Biochem Biophys Res Commun; 2005 Oct; 336(2):596-602. PubMed ID: 16139794 [TBL] [Abstract][Full Text] [Related]
7. Redesigning the substrate specificity of an enzyme: isocitrate dehydrogenase. Doyle SA; Fung SY; Koshland DE Biochemistry; 2000 Nov; 39(46):14348-55. PubMed ID: 11087384 [TBL] [Abstract][Full Text] [Related]
8. Expression, purification, and substrate specificity of isocitrate dehydrogenase from Thermus thermophilus HB8. Miyazaki K; Yaoi T; Oshima T Eur J Biochem; 1994 May; 221(3):899-903. PubMed ID: 8181473 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of tetrameric homoisocitrate dehydrogenase from an extreme thermophile, Thermus thermophilus: involvement of hydrophobic dimer-dimer interaction in extremely high thermotolerance. Miyazaki J; Asada K; Fushinobu S; Kuzuyama T; Nishiyama M J Bacteriol; 2005 Oct; 187(19):6779-88. PubMed ID: 16166541 [TBL] [Abstract][Full Text] [Related]
10. Structure of Thermus thermophilus homoisocitrate dehydrogenase in complex with a designed inhibitor. Nango E; Yamamoto T; Kumasaka T; Eguchi T J Biochem; 2011 Dec; 150(6):607-14. PubMed ID: 21813504 [TBL] [Abstract][Full Text] [Related]
11. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1. Hwa KY; Subramani B; Shen ST; Lee YM Enzyme Microb Technol; 2015 Sep; 77():14-20. PubMed ID: 26138395 [TBL] [Abstract][Full Text] [Related]
12. TK1211 Encodes an Amino Acid Racemase towards Leucine and Methionine in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Zheng RC; Lu XF; Tomita H; Hachisuka SI; Zheng YG; Atomi H J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468590 [TBL] [Abstract][Full Text] [Related]
13. The role of glutamate 87 in the kinetic mechanism of Thermus thermophilus isopropylmalate dehydrogenase. Dean AM; Dvorak L Protein Sci; 1995 Oct; 4(10):2156-67. PubMed ID: 8535253 [TBL] [Abstract][Full Text] [Related]
14. Structure of an archaeal alanine:glyoxylate aminotransferase. Sakuraba H; Yoneda K; Takeuchi K; Tsuge H; Katunuma N; Ohshima T Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):696-9. PubMed ID: 18560158 [TBL] [Abstract][Full Text] [Related]
15. Lysine Biosynthesis of Thermococcus kodakarensis with the Capacity to Function as an Ornithine Biosynthetic System. Yoshida A; Tomita T; Atomi H; Kuzuyama T; Nishiyama M J Biol Chem; 2016 Oct; 291(41):21630-21643. PubMed ID: 27566549 [TBL] [Abstract][Full Text] [Related]
16. An ornithine ω-aminotransferase required for growth in the absence of exogenous proline in the archaeon Zheng RC; Hachisuka SI; Tomita H; Imanaka T; Zheng YG; Nishiyama M; Atomi H J Biol Chem; 2018 Mar; 293(10):3625-3636. PubMed ID: 29352105 [TBL] [Abstract][Full Text] [Related]
17. A Structurally Novel Lipoyl Synthase in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Jin JQ; Hachisuka SI; Sato T; Fujiwara T; Atomi H Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978128 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of the latent 3-isopropylmalate dehydrogenase activity of promiscuous homoisocitrate dehydrogenase by directed evolution. Suzuki Y; Asada K; Miyazaki J; Tomita T; Kuzuyama T; Nishiyama M Biochem J; 2010 Nov; 431(3):401-10. PubMed ID: 20735360 [TBL] [Abstract][Full Text] [Related]
19. Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures. Fukushima E; Shinka Y; Fukui T; Atomi H; Imanaka T J Bacteriol; 2007 Oct; 189(19):7134-44. PubMed ID: 17660280 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of pantoate kinase from Thermococcus kodakarensis. Kita A; Kishimoto A; Shimosaka T; Tomita H; Yokooji Y; Imanaka T; Atomi H; Miki K Proteins; 2020 May; 88(5):718-724. PubMed ID: 31697438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]