These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2783207)

  • 1. Effect of two week lymphatic occlusion on the mechanical properties of dog femoral arteries.
    Nádasy GL; Solti F; Monos E; Schneider F; Bérczi V; Kovách AG
    Atherosclerosis; 1989 Aug; 78(2-3):251-60. PubMed ID: 2783207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased vascular contraction and elastic stiffening after intramural lymphostasis.
    Bérczi V; Solti F; Schneider F; Monos E
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1289-94. PubMed ID: 3202192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical behavior of vascular smooth muscle in cylindrical segments of arteries in vitro.
    Dobrin PB
    Ann Biomed Eng; 1984; 12(5):497-510. PubMed ID: 6534220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions.
    Hudetz AG; Monos E
    Acta Physiol Acad Sci Hung; 1981; 57(2):111-22. PubMed ID: 7315373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraluminal pressure modulates the magnitude and the frequency of induced vasomotion in rat arteries.
    Achakri H; Stergiopulos N; Hoogerwerf N; Hayoz D; Brunner HR; Meister JJ
    J Vasc Res; 1995; 32(4):237-46. PubMed ID: 7544632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated microgravity effects on the rat carotid and femoral arteries: role of contractile protein expression and mechanical properties of the vessel wall.
    Hwang S; Shelkovnikov SA; Purdy RE
    J Appl Physiol (1985); 2007 Apr; 102(4):1595-603. PubMed ID: 17218426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple model describing the elastic properties of human umbilical arterial smooth muscle.
    Nádasy GL; Mohácsi E; Monos E; Lear JC; Kovách AG
    Acta Physiol Hung; 1987; 70(1):75-85. PubMed ID: 3425335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphatic arteriopathy: damage to the wall of the canine femoral artery after lymphatic blockade.
    Solti F; Jellinek H; Schneider F; Lengyel E; Bérczi V; Kékesi V
    Lymphology; 1991 Jun; 24(2):54-9. PubMed ID: 1921476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active and passive mechanical characteristics of bovine mesenteric lymphatics.
    Ohhashi T; Azuma T; Sakaguchi M
    Am J Physiol; 1980 Jul; 239(1):H88-95. PubMed ID: 7396023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of carotid artery mechanics in the rat, rabbit, and dog.
    Cox RH
    Am J Physiol; 1978 Mar; 234(3):H280-8. PubMed ID: 629363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical properties of canine vertebral and internal carotid arteries.
    Bérczi V; Tóth P; Kovách AG; Monos E
    Acta Physiol Hung; 1990; 75(2):133-45. PubMed ID: 2339612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus.
    Bank AJ; Wang H; Holte JE; Mullen K; Shammas R; Kubo SH
    Circulation; 1996 Dec; 94(12):3263-70. PubMed ID: 8989139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical properties of normal and fibrosclerotic human cerebral arteries.
    Hudetz AG; Márk G; Kovách AG; Kerényi T; Fody L; Monos E
    Atherosclerosis; 1981 Jun; 39(3):353-65. PubMed ID: 7259819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties.
    Bank AJ; Wilson RF; Kubo SH; Holte JE; Dresing TJ; Wang H
    Circ Res; 1995 Nov; 77(5):1008-16. PubMed ID: 7554135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for assessment of vascular reactivity in bone: in vitro studies on resistance arteries isolated from porcine cancellous bone.
    Lundgaard A; Aalkjaer C; Holm-Nielsen P; Mulvany MJ; Hansen ES
    J Orthop Res; 1996 Nov; 14(6):962-71. PubMed ID: 8982140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of acute ischaemia on active and passive large deformation mechanics of canine carotid arteries.
    Monos E; Kovách AG
    Acta Physiol Acad Sci Hung; 1979; 54(1):23-31. PubMed ID: 546047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional in-vitro studies of femoral arterial walls of the dog.
    Attinger FM
    Circ Res; 1968 Jun; 22(6):829-40. PubMed ID: 5659818
    [No Abstract]   [Full Text] [Related]  

  • 18. Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs.
    Barra JG; Armentano RL; Levenson J; Fischer EI; Pichel RH; Simon A
    Circ Res; 1993 Dec; 73(6):1040-50. PubMed ID: 8222076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of smooth muscle activation on the mechanical properties of pig carotid arteries.
    Hudetz AG; Márk G; Kovách AG; Monos E
    Acta Physiol Acad Sci Hung; 1980; 56(3):263-73. PubMed ID: 7257844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biaxial anisotropy of dog carotid artery: estimation of circumferential elastic modulus.
    Dobrin PB
    J Biomech; 1986; 19(5):351-8. PubMed ID: 3733760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.