These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 27832089)

  • 1. Spatial Patterns of Soil Respiration Links Above and Belowground Processes along a Boreal Aspen Fire Chronosequence.
    Das Gupta S; Mackenzie MD
    PLoS One; 2016; 11(11):e0165602. PubMed ID: 27832089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.
    Angstmann JL; Ewers BE; Kwon H
    Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States.
    Buchmann N; Kao WY; Ehleringer J
    Oecologia; 1997 Mar; 110(1):109-119. PubMed ID: 28307459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the influence of site quality, stand age, fire and climate on aboveground tree production in Siberian Scots pine forests.
    Wirth C; Schulze ED; Kusznetova V; Milyukova I; Hardes G; Siry M; Schulze B; Vygodskaya NN
    Tree Physiol; 2002 Jun; 22(8):537-52. PubMed ID: 12045026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large, sustained soil CO
    Halim MA; Bieser JMH; Thomas SC
    Sci Total Environ; 2024 Jun; 930():172666. PubMed ID: 38653415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway.
    Børja I; De Wit HA; Steffenrem A; Majdi H
    Tree Physiol; 2008 May; 28(5):773-84. PubMed ID: 18316309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuel-reduction management alters plant composition, carbon and nitrogen pools, and soil thaw in Alaskan boreal forest.
    Melvin AM; Celis G; Johnstone JF; McGuire AD; Genet H; Schuur EAG; Rupp TS; Mack MC
    Ecol Appl; 2018 Jan; 28(1):149-161. PubMed ID: 28987028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf area dynamics of a boreal black spruce fire chronosequence.
    Bond-Lamberty B; Wang C; Gower ST; Norman J
    Tree Physiol; 2002 Oct; 22(14):993-1001. PubMed ID: 12359526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest.
    Boby LA; Schuur EA; Mack MC; Verbyla D; Johnstone JF
    Ecol Appl; 2010 Sep; 20(6):1633-47. PubMed ID: 20945764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 76-year decline and recovery of aspen mediated by contrasting fire regimes: Long-unburned, infrequent and frequent mixed-severity wildfire.
    Brewen CJ; Berrill JP; Ritchie MW; Boston K; Dagley CM; Jones B; Coppoletta M; Burnett CL
    PLoS One; 2021; 16(2):e0232995. PubMed ID: 33539349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Above- and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively.
    Jones IL; DeWalt SJ; Lopez OR; Bunnefeld L; Pattison Z; Dent DH
    Sci Total Environ; 2019 Dec; 697():133987. PubMed ID: 31484096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined effects of nitrogen addition and organic matter manipulation on soil respiration in a Chinese pine forest.
    Wang J; Wu L; Zhang C; Zhao X; Bu W; Gadow KV
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22701-22710. PubMed ID: 27557973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen balance along a northern boreal forest fire chronosequence.
    Palviainen M; Pumpanen J; Berninger F; Ritala K; Duan B; Heinonsalo J; Sun H; Köster E; Köster K
    PLoS One; 2017; 12(3):e0174720. PubMed ID: 28358884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil respiration rates and δ13C(CO2) in natural beech forest (Fagus sylvatica L.) in relation to stand structure.
    Cater M; Ogrinc N
    Isotopes Environ Health Stud; 2011 Jun; 47(2):221-37. PubMed ID: 21644135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests.
    Zhao J; Kang F; Wang L; Yu X; Zhao W; Song X; Zhang Y; Chen F; Sun Y; He T; Han H
    PLoS One; 2014; 9(4):e94966. PubMed ID: 24736660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does time since fire drive live aboveground biomass and stand structure in low fire activity boreal forests? Impacts on their management.
    Portier J; Gauthier S; Cyr G; Bergeron Y
    J Environ Manage; 2018 Nov; 225():346-355. PubMed ID: 30103137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China].
    Luo X; Wang YL; Zhang JQ
    Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):713-724. PubMed ID: 29722211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence.
    Bond-Lamberty B; Wang C; Gower ST
    Tree Physiol; 2004 Dec; 24(12):1387-95. PubMed ID: 15465701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in soil carbon and nitrogen cycling along a 72-year wildfire chronosequence in Michigan jack pine forests.
    Yermakov Z; Rothstein DE
    Oecologia; 2006 Oct; 149(4):690-700. PubMed ID: 16804702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Belowground carbon pools and processes in different age stands of Douglas-fir.
    Klopatek JM
    Tree Physiol; 2002 Feb; 22(2-3):197-204. PubMed ID: 11830416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.