These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27832091)

  • 1. Impedance Flow Cytometry: A Novel Technique in Pollen Analysis.
    Heidmann I; Schade-Kampmann G; Lambalk J; Ottiger M; Di Berardino M
    PLoS One; 2016; 11(11):e0165531. PubMed ID: 27832091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance Flow Cytometry as a Tool to Analyze Microspore and Pollen Quality.
    Heidmann I; Di Berardino M
    Methods Mol Biol; 2017; 1669():339-354. PubMed ID: 28936669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viability and membrane potential analysis of Bacillus megaterium cells by impedance flow cytometry.
    David F; Hebeisen M; Schade G; Franco-Lara E; Di Berardino M
    Biotechnol Bioeng; 2012 Feb; 109(2):483-92. PubMed ID: 21956238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Anal Chem; 2019 Dec; 91(23):15204-15212. PubMed ID: 31702127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of Impedance Flow Cytometry in Doubled Haploid Technology.
    Heidmann I; Di Berardino M
    Methods Mol Biol; 2021; 2289():47-67. PubMed ID: 34270062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedance flow cytometry allows the early prediction of embryo yields in wheat (Triticum aestivum L.) microspore cultures.
    Canonge J; Philippot M; Leblanc C; Potin P; Bodin M
    Plant Sci; 2020 Nov; 300():110586. PubMed ID: 33180700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hazelnut Pollen Phenotyping Using Label-Free Impedance Flow Cytometry.
    Ascari L; Cristofori V; Macrì F; Botta R; Silvestri C; De Gregorio T; Huerta ES; Di Berardino M; Kaufmann S; Siniscalco C
    Front Plant Sci; 2020; 11():615922. PubMed ID: 33370424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of Impedance Flow Cytometry to Assess the Viability and Quantity of
    Rafiq H; Hartung J; Burgel L; Röll G; Graeff-Hönninger S
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle Self-Aligning, Focusing, and Electric Impedance Microcytometer Device for Label-Free Single Cell Morphology Discrimination and Yeast Budding Analysis.
    Xie X; Zhang Z; Ge X; Zhao X; Hao L; Cheng Z; Zhou W; Du Y; Wang L; Tian F; Xu X
    Anal Chem; 2019 Nov; 91(21):13398-13406. PubMed ID: 31596074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale Analysis of Pollen Viability and Oxidative Level Using H
    Rutley N; Miller G
    Methods Mol Biol; 2020; 2160():167-179. PubMed ID: 32529435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free impedance flow cytometry for nanotoxicity screening.
    Ostermann M; Sauter A; Xue Y; Birkeland E; Schoelermann J; Holst B; Cimpan MR
    Sci Rep; 2020 Jan; 10(1):142. PubMed ID: 31924828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free hybridoma cell culture quality control by a chip-based impedance flow cytometer.
    Pierzchalski A; Hebeisen M; Mittag A; Bocsi J; Di Berardino M; Tarnok A
    Lab Chip; 2012 Nov; 12(21):4533-43. PubMed ID: 22907524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Pollen Viability for Wheat.
    Impe D; Reitz J; Köpnick C; Rolletschek H; Börner A; Senula A; Nagel M
    Front Plant Sci; 2019; 10():1588. PubMed ID: 32038666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Use of Impedance Flow Cytometry for Classifying the Viability State of
    Bertelsen CV; Franco JC; Skands GE; Dimaki M; Svendsen WE
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33172055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro pollen viability and pollen germination in cherry laurel (Prunus laurocerasus L.).
    Sulusoglu M; Cavusoglu A
    ScientificWorldJournal; 2014; 2014():657123. PubMed ID: 25405230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Down-Regulating CsHT1, a Cucumber Pollen-Specific Hexose Transporter, Inhibits Pollen Germination, Tube Growth, and Seed Development.
    Cheng J; Wang Z; Yao F; Gao L; Ma S; Sui X; Zhang Z
    Plant Physiol; 2015 Jun; 168(2):635-47. PubMed ID: 25888616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient and rapid transgenic pollen screening and detection method using flow cytometry.
    Moon HS; Eda S; Saxton AM; Ow DW; Stewart CN
    Biotechnol J; 2011 Jan; 6(1):118-23. PubMed ID: 21154436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid determination of general cell status, cell viability, and optimal harvest time in eukaryotic cell cultures by impedance flow cytometry.
    Opitz C; Schade G; Kaufmann S; Di Berardino M; Ottiger M; Grzesiek S
    Appl Microbiol Biotechnol; 2019 Oct; 103(20):8619-8629. PubMed ID: 31396681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.