These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27832270)

  • 61. It's not easy seeing green: The veridical perception of small spots.
    Vanston JE; Boehm AE; Tuten WS; Roorda A
    J Vis; 2023 May; 23(5):2. PubMed ID: 37133838
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Unique yellow shifts for small and brief stimuli in the central retina.
    Greene MJ; Boehm AE; Vanston JE; Pandiyan VP; Sabesan R; Tuten WS
    J Vis; 2024 Jun; 24(6):2. PubMed ID: 38833255
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Retinal imaging with adaptive optics scanning laser ophthalmoscopy in unexplained central ring scotoma.
    Joeres S; Jones SM; Chen DC; Silva D; Olivier S; Fawzi A; Castellarin A; Sadda SR
    Arch Ophthalmol; 2008 Apr; 126(4):543-7. PubMed ID: 18413527
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cone-specific measures of human color vision.
    Rabin J
    Invest Ophthalmol Vis Sci; 1996 Dec; 37(13):2771-4. PubMed ID: 8977494
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The eye of the blue acara (Aequidens pulcher, Cichlidae) grows to compensate for defocus due to chromatic aberration.
    Kröger RH; Wagner HJ
    J Comp Physiol A; 1996 Dec; 179(6):837-42. PubMed ID: 8956500
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration.
    Zhang X; Thibos LN; Bradley A
    Optom Vis Sci; 1997 Jul; 74(7):563-9. PubMed ID: 9293526
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Adaptive optics scanning laser ophthalmoscope-based microperimetry.
    Tuten WS; Tiruveedhula P; Roorda A
    Optom Vis Sci; 2012 May; 89(5):563-74. PubMed ID: 22446720
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modeling visual performance differences 'around' the visual field: A computational observer approach.
    Kupers ER; Carrasco M; Winawer J
    PLoS Comput Biol; 2019 May; 15(5):e1007063. PubMed ID: 31125331
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Testing the effect of ocular aberrations in the perceived transverse chromatic aberration.
    Aissati S; Vinas M; Benedi-Garcia C; Dorronsoro C; Marcos S
    Biomed Opt Express; 2020 Aug; 11(8):4052-4068. PubMed ID: 32923028
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Achromatizing the human eye.
    Bradley A; Zhang XX; Thibos LN
    Optom Vis Sci; 1991 Aug; 68(8):608-16. PubMed ID: 1923337
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of wavelength on in vivo images of the human cone mosaic.
    Choi SS; Doble N; Lin J; Christou J; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2598-605. PubMed ID: 16396019
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Optical and neural anisotropy in peripheral vision.
    Zheleznyak L; Barbot A; Ghosh A; Yoon G
    J Vis; 2016; 16(5):1. PubMed ID: 26928220
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Off-axis aberrations of a wide-angle schematic eye model.
    Escudero-Sanz I; Navarro R
    J Opt Soc Am A Opt Image Sci Vis; 1999 Aug; 16(8):1881-91. PubMed ID: 10435267
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Objective measurement of the off-axis longitudinal chromatic aberration in the human eye.
    Rynders MC; Navarro R; Losada MA
    Vision Res; 1998 Feb; 38(4):513-22. PubMed ID: 9536375
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye.
    Harmening WM; Tiruveedhula P; Roorda A; Sincich LC
    Biomed Opt Express; 2012 Sep; 3(9):2066-77. PubMed ID: 23024901
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Eye tracking-based estimation and compensation of chromatic offsets for multi-wavelength retinal microstimulation with foveal cone precision.
    Domdei N; Linden M; Reiniger JL; Holz FG; Harmening WM
    Biomed Opt Express; 2019 Aug; 10(8):4126-4141. PubMed ID: 31452999
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Interocular differences in transverse chromatic aberration determine chromostereopsis for small pupils.
    Ye M; Bradley A; Thibos LN; Zhang XX
    Vision Res; 1991; 31(10):1787-96. PubMed ID: 1767497
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Wide-angle chromatic aberration corrector for the human eye.
    Benny Y; Manzanera S; Prieto PM; Ribak EN; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1538-44. PubMed ID: 17491621
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Color vision in the peripheral retina.
    Johnson MA
    Am J Optom Physiol Opt; 1986 Feb; 63(2):97-103. PubMed ID: 3953765
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs.
    Bará S; Navarro R
    J Opt Soc Am A Opt Image Sci Vis; 2003 Jan; 20(1):1-10. PubMed ID: 12542312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.