These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27832270)

  • 81. Infant color vision: the effect of test field size on Rayleigh discriminations.
    Packer O; Hartmann EE; Teller DY
    Vision Res; 1984; 24(10):1247-60. PubMed ID: 6523745
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Study on chromatic aberration in a population of Chinese myopic eyes by means of optical design.
    He Y; Wang Y; Wang Z; Fang C; Liu Y; Zhang L; Zheng S; Wang L; Chang S
    Biomed Opt Express; 2013 May; 4(5):667-79. PubMed ID: 23667784
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy.
    Yang Q; Zhang J; Nozato K; Saito K; Williams DR; Roorda A; Rossi EA
    Biomed Opt Express; 2014 Sep; 5(9):3174-91. PubMed ID: 25401030
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The symmetry of visual fields in chromatic discrimination.
    Danilova MV; Mollon JD
    Brain Cogn; 2009 Feb; 69(1):39-46. PubMed ID: 18579274
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Comment on "Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye".
    Artal P
    Biomed Opt Express; 2012 Nov; 3(11):2772-3. PubMed ID: 23162716
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Hiding in plain view.
    Schwab IR; Marshall J
    Br J Ophthalmol; 2003 Mar; 87(3):262. PubMed ID: 12598428
    [No Abstract]   [Full Text] [Related]  

  • 87. Spectral discrimination in color blind animals via chromatic aberration and pupil shape.
    Stubbs AL; Stubbs CW
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8206-11. PubMed ID: 27382180
    [TBL] [Abstract][Full Text] [Related]  

  • 88. High refresh rate display for natural monocular viewing in AOSLO psychophysics experiments.
    Moon B; Linebach G; Yang A; Jenks SK; Rucci M; Poletti M; Rolland JP
    bioRxiv; 2024 May; ():. PubMed ID: 38854135
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Improved wide-field emmetropic human eye model based on ocular wavefront measurements and geometry-independent gradient index lens.
    Nadeem Akram M; Baraas RC; Baskaran K
    J Opt Soc Am A Opt Image Sci Vis; 2018 Nov; 35(11):1954-1967. PubMed ID: 30461856
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The influence of a stationary single line in darkness on the visual perception of eye level.
    Matin L; Li W
    Vision Res; 1994 Feb; 34(3):311-30. PubMed ID: 8160367
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Frederic Ives Medal paper. History and current status of a physiologically based system of photometry and colorimetry.
    Boynton RM
    J Opt Soc Am A Opt Image Sci Vis; 1996 Aug; 13(8):1609-21. PubMed ID: 8755787
    [TBL] [Abstract][Full Text] [Related]  

  • 92. An adaptive optics imaging system designed for clinical use.
    Zhang J; Yang Q; Saito K; Nozato K; Williams DR; Rossi EA
    Biomed Opt Express; 2015 Jun; 6(6):2120-37. PubMed ID: 26114033
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope.
    Sheehy CK; Tiruveedhula P; Sabesan R; Roorda A
    Biomed Opt Express; 2015 Jul; 6(7):2412-23. PubMed ID: 26203370
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The lateral chromatic aberration of the eye.
    Howarth PA
    Ophthalmic Physiol Opt; 1984; 4(3):223-6. PubMed ID: 6472851
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Individual variation in cone photoreceptor density in house sparrows: implications for between-individual differences in visual resolution and chromatic contrast.
    Ensminger AL; Fernández-Juricic E
    PLoS One; 2014; 9(11):e111854. PubMed ID: 25372039
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Measurement of the eye's near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique.
    López-Gil N; Howland HC
    Vision Res; 1999 Jun; 39(12):2031-7. PubMed ID: 10343787
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Long eye relief fundus camera and fixation target with partial correction of ocular longitudinal chromatic aberration.
    Steven S; Sulai YN; Cheong SK; Bentley J; Dubra A
    Biomed Opt Express; 2018 Dec; 9(12):6017-6037. PubMed ID: 31065410
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Neuronal Mechanism for Compensation of Longitudinal Chromatic Aberration-Derived Algorithm.
    Barkan Y; Spitzer H
    Front Bioeng Biotechnol; 2018; 6():12. PubMed ID: 29527525
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope.
    Grieve K; Tiruveedhula P; Zhang Y; Roorda A
    Opt Express; 2006 Dec; 14(25):12230-42. PubMed ID: 19529652
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Relationship between perimetric eccentricity and retinal locus in a human eye. Comparison with theoretical calculations.
    Frisén L; Schöldström G
    Acta Ophthalmol (Copenh); 1977 Feb; 55(1):63-8. PubMed ID: 576547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.