BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 27832378)

  • 1. Cell Entry of C3 Exoenzyme from Clostridium botulinum.
    Rohrbeck A; Just I
    Curr Top Microbiol Immunol; 2017; 406():97-118. PubMed ID: 27832378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intermediate filament protein vimentin is essential for axonotrophic effects of Clostridium botulinum C3 exoenzyme.
    Adolf A; Leondaritis G; Rohrbeck A; Eickholt BJ; Just I; Ahnert-Hilger G; Höltje M
    J Neurochem; 2016 Oct; 139(2):234-244. PubMed ID: 27419376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of clostridium botulinum C3 exoenzyme into intact HT22 and J774A.1 cells.
    Rohrbeck A; von Elsner L; Hagemann S; Just I
    Toxins (Basel); 2015 Feb; 7(2):380-95. PubMed ID: 25648844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation.
    Höltje M; Djalali S; Hofmann F; Münster-Wandowski A; Hendrix S; Boato F; Dreger SC; Grosse G; Henneberger C; Grantyn R; Just I; Ahnert-Hilger G
    FASEB J; 2009 Apr; 23(4):1115-26. PubMed ID: 19047066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of astroglial vimentin by extracellular vesicles: Modulation of binding and internalization of C3 transferase in astrocytes and neurons.
    Adolf A; Rohrbeck A; Münster-Wandowski A; Johansson M; Kuhn HG; Kopp MA; Brommer B; Schwab JM; Just I; Ahnert-Hilger G; Höltje M
    Glia; 2019 Apr; 67(4):703-717. PubMed ID: 30485542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridial ADP-ribosylating toxins: effects on ATP and GTP-binding proteins.
    Aktories K
    Mol Cell Biochem; 1994 Sep; 138(1-2):167-76. PubMed ID: 7898461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of Clostridium botulinum C3 exoenzyme to intact cells.
    Rohrbeck A; von Elsner L; Hagemann S; Just I
    Naunyn Schmiedebergs Arch Pharmacol; 2014 Jun; 387(6):523-32. PubMed ID: 24584821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vimentin mediates uptake of C3 exoenzyme.
    Rohrbeck A; Schröder A; Hagemann S; Pich A; Höltje M; Ahnert-Hilger G; Just I
    PLoS One; 2014; 9(6):e101071. PubMed ID: 24967582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation-induced increase in Clostridium botulinum C3 exoenzyme-catalyzed ADP-ribosylation of the small GTP-binding protein Rho.
    Fritz G; Just I; Wollenberg P; Aktories K
    Eur J Biochem; 1994 Aug; 223(3):909-16. PubMed ID: 8055968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADP-ribosylation of the rho/rac gene products by botulinum ADP-ribosyltransferase: identity of the enzyme and effects on protein and cell functions.
    Narumiya S; Morii N; Sekine A; Kozaki S
    J Physiol (Paris); 1990; 84(4):267-72. PubMed ID: 2127805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of RhoA by Clostridium botulinum C3 exoenzyme.
    Wilde C; Genth H; Aktories K; Just I
    J Biol Chem; 2000 Jun; 275(22):16478-83. PubMed ID: 10748216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of the Rho-ADP-ribosylating C3 exoenzyme with RalA.
    Wilde C; Barth H; Sehr P; Han L; Schmidt M; Just I; Aktories K
    J Biol Chem; 2002 Apr; 277(17):14771-6. PubMed ID: 11847234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif.
    Rohrbeck A; Höltje M; Adolf A; Oms E; Hagemann S; Ahnert-Hilger G; Just I
    J Biol Chem; 2017 Oct; 292(43):17668-17680. PubMed ID: 28882889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ADP-ribosylation of Rho proteins inhibits sperm motility.
    Hinsch KD; Habermann B; Just I; Hinsch E; Pfisterer S; Schill WB; Aktories K
    FEBS Lett; 1993 Nov; 334(1):32-6. PubMed ID: 8224222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic effects of Clostridium botulinum C3 exoenzyme.
    Just I; Rohrbeck A; Huelsenbeck SC; Hoeltje M
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Mar; 383(3):247-52. PubMed ID: 21193903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a neutralizing monoclonal antibody against botulinum ADP-ribosyltransferase, C3 exoenzyme.
    Kamata Y; Hoshi H; Choki H; Kozaki S
    J Vet Med Sci; 2002 Sep; 64(9):767-71. PubMed ID: 12399599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin.
    Barth H; Hofmann F; Olenik C; Just I; Aktories K
    Infect Immun; 1998 Apr; 66(4):1364-9. PubMed ID: 9529054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADP-ribosylation by Clostridium botulinum C3 exoenzyme increases steady-state GTPase activities of recombinant rhoA and rhoB proteins.
    Mohr C; Koch G; Just I; Aktories K
    FEBS Lett; 1992 Feb; 297(1-2):95-9. PubMed ID: 1551445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.