BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 27832605)

  • 1. BDNF effects on functional recovery across motor behaviors after cervical spinal cord injury.
    Hernandez-Torres V; Gransee HM; Mantilla CB; Wang Y; Zhan WZ; Sieck GC
    J Neurophysiol; 2017 Feb; 117(2):537-544. PubMed ID: 27832605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute intrathecal BDNF enhances functional recovery after cervical spinal cord injury in rats.
    Sieck GC; Gransee HM; Zhan WZ; Mantilla CB
    J Neurophysiol; 2021 Jun; 125(6):2158-2165. PubMed ID: 33949892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury.
    Mantilla CB; Gransee HM; Zhan WZ; Sieck GC
    Exp Neurol; 2013 Sep; 247():101-9. PubMed ID: 23583688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel regenerative drug, SPG302 promotes functional recovery of diaphragm muscle activity after cervical spinal cord injury.
    Fogarty MJ; Zhan WZ; Simmon VF; Vanderklish PW; Sarraf ST; Sieck GC
    J Physiol; 2023 Jun; 601(12):2513-2532. PubMed ID: 36815402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of glutamatergic and serotonergic neurotransmission on diaphragm muscle activity after cervical spinal hemisection.
    Mantilla CB; Gransee HM; Zhan WZ; Sieck GC
    J Neurophysiol; 2017 Sep; 118(3):1732-1738. PubMed ID: 28659464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons.
    Gill LC; Gransee HM; Sieck GC; Mantilla CB
    Respir Physiol Neurobiol; 2016 Jun; 226():128-36. PubMed ID: 26506253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diaphragm electromyographic activity following unilateral midcervical contusion injury in rats.
    Rana S; Sieck GC; Mantilla CB
    J Neurophysiol; 2017 Feb; 117(2):545-555. PubMed ID: 27832610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury.
    Gransee HM; Zhan WZ; Sieck GC; Mantilla CB
    J Neurotrauma; 2015 Feb; 32(3):185-93. PubMed ID: 25093762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted delivery of TrkB receptor to phrenic motoneurons enhances functional recovery of rhythmic phrenic activity after cervical spinal hemisection.
    Gransee HM; Zhan WZ; Sieck GC; Mantilla CB
    PLoS One; 2013; 8(5):e64755. PubMed ID: 23724091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TrkB gene therapy by adeno-associated virus enhances recovery after cervical spinal cord injury.
    Martínez-Gálvez G; Zambrano JM; Diaz Soto JC; Zhan WZ; Gransee HM; Sieck GC; Mantilla CB
    Exp Neurol; 2016 Feb; 276():31-40. PubMed ID: 26607912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diaphragm muscle function following midcervical contusion injury in rats.
    Khurram OU; Fogarty MJ; Rana S; Vang P; Sieck GC; Mantilla CB
    J Appl Physiol (1985); 2019 Jan; 126(1):221-230. PubMed ID: 30236045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged C2 spinal hemisection-induced inactivity reduces diaphragm muscle specific force with modest, selective atrophy of type IIx and/or IIb fibers.
    Mantilla CB; Greising SM; Zhan WZ; Seven YB; Sieck GC
    J Appl Physiol (1985); 2013 Feb; 114(3):380-6. PubMed ID: 23195635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function.
    Ghosh B; Wang Z; Nong J; Urban MW; Zhang Z; Trovillion VA; Wright MC; Zhong Y; Lepore AC
    J Neurosci; 2018 Jun; 38(26):5982-5995. PubMed ID: 29891731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TrkB kinase activity is critical for recovery of respiratory function after cervical spinal cord hemisection.
    Mantilla CB; Greising SM; Stowe JM; Zhan WZ; Sieck GC
    Exp Neurol; 2014 Nov; 261():190-5. PubMed ID: 24910201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cervical spinal hemisection alters phrenic motor neuron glutamatergic mRNA receptor expression.
    Rana S; Zhan WZ; Sieck GC; Mantilla CB
    Exp Neurol; 2022 Jul; 353():114030. PubMed ID: 35247372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motoneuron glutamatergic receptor expression following recovery from cervical spinal hemisection.
    Gransee HM; Gonzalez Porras MA; Zhan WZ; Sieck GC; Mantilla CB
    J Comp Neurol; 2017 Apr; 525(5):1192-1205. PubMed ID: 27650492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of 5-HT
    Lee KZ; Gonzalez-Rothi EJ
    Respir Physiol Neurobiol; 2017 Oct; 244():51-55. PubMed ID: 28711602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.
    Seven YB; Mantilla CB; Sieck GC
    J Appl Physiol (1985); 2014 Dec; 117(11):1308-16. PubMed ID: 25257864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury.
    Mercier LM; Gonzalez-Rothi EJ; Streeter KA; Posgai SS; Poirier AS; Fuller DD; Reier PJ; Baekey DM
    J Neurophysiol; 2017 Feb; 117(2):767-776. PubMed ID: 27881723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disproportionate loss of excitatory inputs to smaller phrenic motor neurons following cervical spinal hemisection.
    Rana S; Zhan WZ; Mantilla CB; Sieck GC
    J Physiol; 2020 Oct; 598(20):4693-4711. PubMed ID: 32735344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.