BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 27832650)

  • 1. Gulo Acts as a de novo Marker for Pronephric Tubules in Xenopus laevis.
    Xie Y; Liu Y; Zhao Y; Wang H; Liu Y; Wang H; Li M; Zhao H; Zhou Q; Lv X
    Kidney Blood Press Res; 2016; 41(6):794-801. PubMed ID: 27832650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Annexin IV (Xanx-4) has a functional role in the formation of pronephric tubules.
    Seville RA; Nijjar S; Barnett MW; Massé K; Jones EA
    Development; 2002 Apr; 129(7):1693-704. PubMed ID: 11923205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for Xlim-1 in pronephros development in Xenopus laevis.
    Chan TC; Takahashi S; Asashima M
    Dev Biol; 2000 Dec; 228(2):256-69. PubMed ID: 11112328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pdzrn3 is required for pronephros morphogenesis in Xenopus laevis.
    Marracci S; Vangelisti A; Raffa V; Andreazzoli M; Dente L
    Int J Dev Biol; 2016; 60(1-3):57-63. PubMed ID: 26934292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules.
    Zhou X; Vize PD
    Dev Biol; 2004 Jul; 271(2):322-38. PubMed ID: 15223337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of cDNA sequences of L-gulono-gamma-lactone oxidase, a key enzyme for biosynthesis of ascorbic acid, from extant primitive fish groups.
    Cho YS; Douglas SE; Gallant JW; Kim KY; Kim DS; Nam YK
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jun; 147(2):178-90. PubMed ID: 17317254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precocious expression of the Wilms' tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis.
    Wallingford JB; Carroll TJ; Vize PD
    Dev Biol; 1998 Oct; 202(1):103-12. PubMed ID: 9758706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-gulono-γ-lactone oxidase expression and vitamin C synthesis in the brain and kidney of the African lungfish, Protopterus annectens.
    Ching B; Ong JL; Chng YR; Chen XL; Wong WP; Chew SF; Ip YK
    FASEB J; 2014 Aug; 28(8):3506-17. PubMed ID: 24769670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of arid5b isoforms in Xenopus laevis pronephros.
    Le Bouffant R; Cunin AC; Buisson I; Cartry J; Riou JF; Umbhauer M
    Int J Dev Biol; 2014; 58(5):363-8. PubMed ID: 25354457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis.
    Bracken CM; Mizeracka K; McLaughlin KA
    Dev Dyn; 2008 Jan; 237(1):132-44. PubMed ID: 18069689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinoic acid biosynthetic enzyme ALDH1 localizes in a subset of retinoid-dependent tissues during xenopus development.
    Ang HL; Duester G
    Dev Dyn; 1999 Jul; 215(3):264-72. PubMed ID: 10398536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A functional screen for genes involved in Xenopus pronephros development.
    Kyuno J; Massé K; Jones EA
    Mech Dev; 2008 Jul; 125(7):571-86. PubMed ID: 18472403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoration of vitamin C synthesis in transgenic Gulo-/- mice by helper-dependent adenovirus-based expression of gulonolactone oxidase.
    Li Y; Shi CX; Mossman KL; Rosenfeld J; Boo YC; Schellhorn HE
    Hum Gene Ther; 2008 Dec; 19(12):1349-58. PubMed ID: 18764764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Na+/PO4 cotransporter SLC20A1 gene labels distinct restricted subdomains of the developing pronephros in Xenopus and zebrafish embryos.
    Nichane M; Van Campenhout C; Pendeville H; Voz ML; Bellefroid EJ
    Gene Expr Patterns; 2006 Oct; 6(7):667-72. PubMed ID: 16531124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alcohol dehydrogenases in Xenopus development: conserved expression of ADH1 and ADH4 in epithelial retinoid target tissues.
    Hoffmann I; Ang HL; Duester G
    Dev Dyn; 1998 Nov; 213(3):261-70. PubMed ID: 9825862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of a Chromosome 8 Inversion and Exon Mutations Confirm Common Gulonolactone Oxidase Gene Evolution Among Primates, Including H. Neanderthalensis.
    Mansueto A; Good DJ
    J Mol Evol; 2024 Jun; 92(3):266-277. PubMed ID: 38683367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An increase in intracellular Ca2+ is involved in pronephric tubule differentiation in the amphibian Xenopus laevis.
    Leclerc C; Webb SE; Miller AL; Moreau M
    Dev Biol; 2008 Sep; 321(2):357-67. PubMed ID: 18634776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional rescue of vitamin C synthesis deficiency in human cells using adenoviral-based expression of murine l-gulono-gamma-lactone oxidase.
    Ha MN; Graham FL; D'Souza CK; Muller WJ; Igdoura SA; Schellhorn HE
    Genomics; 2004 Mar; 83(3):482-92. PubMed ID: 14962674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hspa9 is required for pronephros specification and formation in Xenopus laevis.
    Gassié L; Lombard A; Moraldi T; Bibonne A; Leclerc C; Moreau M; Marlier A; Gilbert T
    Dev Dyn; 2015 Dec; 244(12):1538-49. PubMed ID: 26335666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved or lost: molecular evolution of the key gene GULO in vertebrate vitamin C biosynthesis.
    Yang H
    Biochem Genet; 2013 Jun; 51(5-6):413-25. PubMed ID: 23404229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.